Bill Allombert on Tue, 28 Mar 2023 16:03:02 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: finite fields -- choice of defining polynomial
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: finite fields -- choice of defining polynomial
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 28 Mar 2023 16:01:45 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1680012097; c=relaxed/relaxed; bh=/HD/zF5bV0Ms79h3vj995FQA64+NONZtPR0MdpBDeA0=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=DuxwFkAe3d73abeeueRHt1Lbbt3jRhxYUazRAFopyFU34mb62GVj8hZDwCMcIDRD/7/yz4FynS1qTAGfTyqr2wayjqsuvotNzt39GMJXN+n9edfzev9Z8Wq2mx6PcnRtt8SYRFFRHBYmUxAAC5D80Kjo0PWSZ3bTQGWb71/IhBmUXy8gqCHJ+dYaIEMzc1OX4TCPg85UVQK4kf5hzuvpiaBL6WEwDLVxvu0pAWmoACyj+umpSC47IIDcY5RVXSPeSnOSOG7ZnmuN8KuFQKjewAVVcQmwo56v4IMUQuy9OnIDOyzKfSl2tiD0SuMfmqTBreRY5TMbImMAtmt7vF9Wl6dR7U/ITWTwJgtk9KlOJyaMXJZV5si+25NZrIOnyi+CRvtDosO2lGNALDzgI5mWXVZNF4ZAIVaeBYqVY4UKTOLZxBgyNRJloaXhKujUjc3bQ14iO5TpIlOypDA81PIDifIdS2t2pdgy7p0iTnn/HyAClD9wxILy0zGr3e/7afRHUcP3Lgg3PvaqvqnVWZvv/koYs9sEJuJXTuqSLA5LtUVYTmIJQGw0lkDH1p5uA5ZK26+1KJYjEHvnrDIDRb13wIb9/OpichFNjFP0Jkk7aMZ/DzxvP4R3bszLoKIqWRzJImC1i60p1eTYJ7znRJchLUzw9upLyn+MSyP14Lc9abM=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1680012097; cv=none; b=dUXjp8DT3VvhZ/NB5zic/wEOB4Ydz5iz1bgCrKRQc7i5atL6czkLSx5gCGNWwclOSw/gnskiEolXyIjl6fpYZ/hCV+1gOSeAdBQQAwiqRjBbnnfls5slyJU04zM6scQ5Pt8BTbGkf7rCV9N1lwT2XZaTesM745kmeMsIxM+KADljFlQsJ3UjzJgwgunRCiMdqXZfqYm0Fdp15+WdeEhpE2vDWxVprQQZ5zpoa5MfccyKAKJ7erQHQuktYGGuRuRVQ+/CFaPbe2kZ7sfCk8HVAjSvYk/doW8OS0kNtRtKy+myIiNjYS7duBpXjaRg7Ru/TBt3FSkaiZW2ucSWnV7fQ+qwpDsHIJyrPd2rH97yCDEFiSge/0viWAS0vokPuPpekorobvj5Ls0/u0n+qh3ke8zOX41RNaF2OSBZGZ9Ut2+GSwMNbLw9NuyVrx+nObmbM1x08hMf4Fq0JMtdmPNygmiHRE2Z6mTOVhSE8kjouglshO00iQKIF4qeUt4k8DhFf8KWBOqmP7OROyhA2Ha2OQMtKuFGeagoSY8ASDe6x1PJe+0xxS38xyJ/jiJWcYdiKbl/8kDW0Rqhxw3cL4CpfrwvrjApxdT82NoNHV6jYLF9O+6WD6Yab9/RUji4WmLAAxnW/ILkFdCv2ePKwoFU4mFMqtJaNwiZKsUjXsmvzVo=
- Authentication-results: smail; arc=none
- Delivery-date: Tue, 28 Mar 2023 16:03:02 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1680012097; bh=/HD/zF5bV0Ms79h3vj995FQA64+NONZtPR0MdpBDeA0=; h=Date:From:To:Subject:References:In-Reply-To:From; b=vFeKADUVgST51wsxvEwO9K1mih+3RcwkqZWMh1KXBaot+hfSZD7xpYmgsuG3QnHoj xD7KzsvSq5NFDxqqJP0exsgbmrKNSFtauJdBUtfTU+pA1OXvF/TIfwXSWgUz4Lv1B2 aI0AjikldVpQWNhWiYKwJhJbJwQBqp+0CF05QgVAAPWwWQteVXnmZ3Iqa2U0kFHf87 bU+Nx2XThrjlaJDcpPQHJiaoIHvHTsyGYaDr0nwGyfiMRuAk4xqC3Y9lN/n68chXOQ 3r5hJi7GY1wsaCW9noLo7fGuj4a5unb+SX1lJRML/341t1pJoPFPMWTZcPmnMHb4+d Vnt+O6Pe2h1XDEMpiUkdvgYrCxfaoXZAL/wDzsS3+UE57yJb8k86+GX5A97F2P5e58 MFke8UaRQAnw/QWgi3+SR9jB3x7ZFPQOykyk4mYG89ZkCbWN5jnd2qbZVqbfh67Xaj 0jT0EdZoLKWyXGmBsGwAEvocGecdaXiMHKkvm3QbnjhkQ3KAOV3ZaAHOt9g4Oojcu/ 4+n0xf7uF4Q2KU91SV7V9pC2t0FpwYtVbzPpnvJxl1hVOgO4z4lIuZhxuWJ3huSO0q klj4t4xfo7I1ofxsiF6f1AeSkPVK4gqR62j5UVWERAjQV/9NdbRy7rVDUh4ysb2F7H Qcl8LzJNKgKdo/iWxX5YMrJo=
- In-reply-to: <CAD0p0K6BcffKYZH-aW9s7wEUEu4v5KJ9ZNqnCreiZr7dFg_aeg@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAD0p0K4Q0zyO2_L0EfPh0mqwT_vC=ZZ9t1hr=A1W_fx+Nf=FRg@mail.gmail.com> <ZCLVZ8LKdPM2cPyP@seventeen> <CAD0p0K6BcffKYZH-aW9s7wEUEu4v5KJ9ZNqnCreiZr7dFg_aeg@mail.gmail.com>
On Tue, Mar 28, 2023 at 02:14:44PM +0100, John Cremona wrote:
> Thanks, Bill.
>
> The reason we want to use Conway polynomials is that they are primitive
> (the root generates the multiplicative group), and also, crucially, that
> these roots form a coherent system of all roots of unity of prime-to-ell
> order in the algebraic closure of F_ell.
>
> I do know that there is no known way to compute them, so that using
> precomputed lists (for some small values of ell and d) is desirable. But I
> bet that a list of all known Conway polynomials would take up less space as
> an optional package than my database of ellipticcurves of conductor up to
> 500000! ( I did not check this reckless claim...)
>
> Still, I am glad that ffinit() is deterministic so will not change.
On the other hand, unfortunately ffprimroot is randomized, so the following
minpoly(ffprimroot(ffgen([p,n]))) (which returns a primitive polynomial)
is not deterministic.
However computing primitive polynomials is much more expensive than ffinit
since it requires to factor p^n-1. (Magma also have tables of such factorizations).
Cheers,
Bill.