hermann on Wed, 15 Nov 2023 22:28:30 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Question on ternary quadratic form |
After two modifications I got this ternary quadratic form: ? Qt [1 0 0] [0 5 28] [0 28 157] ? I know it can be transformed to ternary identity form. In order to determine the transformation I define: ? X [1 0 0] [0 a b] [0 c d] ? And get this: ? X~*Qt*X[1 0 0]
[0 5*a^2 + 56*c*a + 157*c^2 (5*b + 28*d)*a + (28*c*b + 157*d*c)]
[0 (5*b + 28*d)*a + (28*c*b + 157*d*c) 5*b^2 + 56*d*b + 157*d^2]
?Now I switch to wolframscript and determine a solution for the three equations:
In[4]:= FindInstance[5*a^2 + 56*c*a + 157*c^2==1&&5*b^2 + 56*d*b + 157*d^2==1&&(
5*b + 28*d)*a + (28*c*b + 157*d*c)==0,{a,b,c,d},Integers] Out[4]= {{a -> -6, b -> -11, c -> 1, d -> 2}} In[5]:= With that I define matrix Y: ? Y [1 0 0] [0 -6 -11] [0 1 2] ? And really Y is transformation matrix to ternary quadratic form: ? Y~*Qt*Y [1 0 0] [0 1 0] [0 0 1] ?How can I determine integer {a,b,c,d} solutions in PARI/GP without using wolframscript?
Regards, Hermann.