American Citizen on Thu, 30 Nov 2023 03:50:10 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
tossing out an idea to use heights of algebraic points on elliptic curves to help sort isogenies for point searches |
In searching for rational points on some of the curves with very large conductors, such as the Z2xZ8 or Z2xZ4 torsion groups, I have used the isogenous curves to an advantage, selecting certain ones because the point heights for the Mordell-Weil basis are lower.
Let's look at one of my typical curves for face cuboids: py:{4,1}+ (15,8) Elliptic Curve: [0,-31679,0,-1493049600,0] Rank:1 Tate-Sha:1 Regulator:4.0697304843631873930432752505566566024 W1:[78408,13046616] Generator:26/7,15/8,190/99 Height:4.0697304843631873930432752505566566024 Pentacycle:[26,7],[15,8],[190,99],[627,161],[299,49]Torsion: Z4xZ2 Pts: [ [0], [0, 0], [-11760, 3398640], [57600, 0], [-11760, -3398640], [126960, 36691440], [-25921, 0], [126960, -36691440] ]
From the curve E = [0, -31679, 0, -149309600,0] we find the minimal model curve and from that we find the 8-isgenous curves:
Minimal model: M = [1, 0, 0, -114223080, -283150929600]8 isogenous curves: L-series Reg MW Point SHA
I1 = [1, 0, 0, -114223080, -283150929600] 4.0697304844 [16962, 1622346] 1 I2 = [1, 0, 0, -49423080, 130545230400] 2.0348652422 [3480, 24720] 1 I3 = [1, 0, 0, -49095400, 132402324032] 4.0697304844 [4724, 74468] 1 I4 = [1, 0, 0, 10134040, 425388708672] 4.0697304844 [238, 653956] 1 I5 = [1, 0, 0, 352354920, -2007529902000] 8.1394609687 [7350, 985950] 1 I6 = [1, 0, 0, -1617601080, -25035066997200] 32.5578438749 [74762, 16452092] 4 I7 = [1, 0, 0, -1409434380, -31714678433460] 260.4627509993 [12562748/169, 36303784154/2197] 16 I8 = [1, 0, 0, -25879815780, -1602472070375340] 260.4627509993 [12058568/49, 28516665638/343] 16
I1 = M, of course.I have found from past experience that the last 2 or 4 isogenous curves usually have SHA > 1, usually 2^n where n={2,4,etc}
Using the isogeny map from: isog(F,E)->my(S=ellisomat(E)[1]);my([f,fd,urst]=findisom(S,F));[P->ellchangepoint(ellisogenyapply(f,P),urst),P->ellisogenyapply(fd,ellchangepointinv(P,urst))]We move point p = [16962, 1622346] on I1 to the other 7 isogenous curves. These points are not necessarily reduced.
point p2 on I2 = [1998996/361, 1101130188/6859] height:8.139+point p3 on I3 = [1239866848/303601, 368574683576/167284151] height:16.2789+ point p4 on I4 = [-93455084/225625, 69570063653164/107171875] height:16.2789+
point p5 on I5 = [13287418/1089, 72621008602/35937] height:8.139+ point p6 on I6 = [74762, -16526854] height:8.139+ point p7 on I7 = [12562748/169, -36467099878/2197] height:8.139+ point p8 on I8 = [12058568/49, 28516665638/343] height:16.2789+ This was done to show that the isogeny maps found do actually work.Now lets take a non-rational point on M (or I1) say P1 = [-2641, (2641+sqrt(373230717)/2] = approx = [-2641, 10980.0900145917166146328056490104100484287144219040808189].
This point is an algebraic point. Lets move it to the other 7 isogenies using the maps. After some careful work and adjustment of GP-Pari precision to successfully identifie the surds, we find that:
P1 = [-2641, (2641+sqrt(373230717)/2]P2 = [118195921/25917, -4964.59478568773289487300570684264312039574845396833456229]
Or ratherP2 = [118195921/25917, -118195921/51834-186657119/1343381778*sqrt(373230717)]
P3 = [137656039630182673/34005844178493, -2051.180754833907121481575845351035876153760852543913484078793783294978327248669742402457018713025089265830324249400885664886831917994514274772346445584977331412146788331217396915986870331920505804389535685346564864345995104211708279698629930578244267] P3 = [137656039630182673/34005844178493, -137656039630182673/68011688356986-89812271142122611231/63848794318082227206126*sqrt(373230717)]
P4 = [-4862290343371247/688184701053, -29611.37634970070193846955359010625982113907516636543169216572480747151522903903035820881639158927877572287315269865633148465736792035181575735105149000355285996515546179661024480227553331517529781235835740488732840239070111670296357147325268390204820] P4 = [-4862290343371247/688184701053, 4862290343371247/1376369402106-315353037098830011391/183814547938446333906*sqrt(373230717)]
P5 = [93312959, 901343791145.7248055161456534536014689255645919373468659667810330184948020327188402723657591901124117530141924558229632861159081575198774740510424666001074136802740735641524136420732288693604262411700208952370627933629378167015878103482808113860990604]
P5 = [93312959, -93312959/2+93315601/2*sqrt(373230717)]P6 = [-338708641/14401, 7414.861988651332552454406641825858904042992427037720399227171764668061175404296935414391078760131889971894300490220819127924158449042238767877955594946139255302700687262160015127607595147566635721846943664528830768300742147171111134170025790227486365] P6 = [-338708641/14401, 338708641/28802-93286799/414777602*sqrt(373230717)]
P7 = [5708617722978179/124391820121, -530121.8617747221260794522742751126742073602149708207408368818334312238673334853377643882292937838993768464954176606516369136093186207647438858532375531203989123188891273214773600303432517858198065518790749868243306061128996301933147151329511415141447] P7 = [5708617722978179/124391820121, -5708617722978179/248783640242-276429153265304304121/10529652883984498438*sqrt(373230717)]
P8 = [-1347588258112645861/14508879057481, 46402.89860757901292009837858224173943793369226054229297218075389646319273833482488878474538457406797310530826890689531542631111474398705986584838008684341970533508069256924933453625004313390786977725205394304913627471107036231273320896628252198402314] P8 = [-1347588258112645861/14508879057481, 1347588258112645861/29017758114962-25557411883231812119/13264079361369254333642*sqrt(373230717)]
All these points, P1..P8 are algebraic.Examining these points, the simplest algebraic expressions are P1 and P5. All 8 points P1..P8 have a rational or integer x-coordinate, interestingly enough.
I would like to find a height function of these points such that the possible regulator size of the curve might be found this way. I previously started work on a C++ program to do heights of points who are in the real decimal field (doubles, etc). I was able to get values which seemed to make sense (to me).
I have elliptic curves, where the conductor is so huge, there is simply no way to calculate the L-series values effectively using known techniques.
My idea is to use the heights of algebraic points to help point the way to the optimal isogenous curve to search for rational points.
Is this a valid idea, to pull algebraic points across isogenies, and use a height function to help indicate which isogenous curve to search?
- Randall