| Bill Allombert on Mon, 18 Dec 2023 18:39:03 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Question on "qfminim()" for quadratic form |
On Mon, Dec 18, 2023 at 04:05:39PM +0100, hermann@stamm-wilbrandt.de wrote: > pi@raspberrypi5:~ $ n=101 gp -q < m2.gp > 101=[1, 6, 8] > all asserts OK > 528979 [711, -153, -7]~ [2, 9, 4]~ > 10232019 [3127, -673, -31]~ [2, 9, -4]~ > ... > 97549123438 [305322, -65715, -3023]~ [10, 0, -1]~ > 101592175419 [311585, -67063, -3085]~ [10, -1, 0]~ > #S2=168 > 12*h(-4*n)=168 > pi@raspberrypi5:~ $ > > > Because "S2=vecsort(concat(S,-S),norml2)", it has 12*h(-4*n) members for > n!=3 (mod 4): > https://en.wikipedia.org/wiki/Sum_of_squares_function#k_=_3 > > S2.gp output is sorted wrt L2 norm of vectors. Is there a method to > determine either > minimal norm vector or maximal norm vector in S2 efficiently/"more efficient > than to > compute all 12*h(-4*n) elements" ? I am not sure what you mean by 'maximal norm vector", but it you just want one solution, you can try this forqfvec(v,M,n,if(qfeval(M,v)==n,V=v;break())) Cheers, Bill.