Charles Greathouse on Fri, 03 May 2024 06:05:24 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

h_x of points on a rank-11 elliptic curve


I'm trying to work my way through the paper
https://arxiv.org/abs/2403.17955
and I'm at Proposition 2.1.

I have initialized the elliptic curve as
m0=13293998056584952174157235; E=ellinit([0,-432*m0]);

I tried to use the rational points found in
https://arxiv.org/abs/math/0403116
where the curve is apparently defined as
E=ellinit([0,1,0,0,44182596082121121317135170025680399046545625711306]);
and its independent points as
Pvec=[[-30156002278649820, 4093799681127459731025817],[11364087102067560, 6756491872572362690626342],[-20835788771691894, 5927660006237675713476241],[1134264920569989390, 1208031685828825118221478017],[8907565209691176834, 26585114133655761890666064910],[111849199886121334, 37992674604901443769570910],[11724873521668020, 6767159346634715672034457],[-138658831412368575/4, 12719819443574268333325811/8],[165971060901522240, 67941788876402816577138982],[994768217796990, 6647073075327662243966017],[532896351059436225/16, 576457310785324883248677823/64]]
but I can't replicate the result
max{h_x(P_i) | 1 ≤ i ≤ 11} = 76.61
and so must be doing something (several things?) wrong.