On 3 May 2024, at 12:16, Bill Allombert <Bill.Allombert@math.u-bordeaux.fr> wrote:
On Fri, May 03, 2024 at 12:04:54AM -0400, Charles Greathouse wrote:I'm trying to work my way through the paper
https://arxiv.org/abs/2403.17955
and I'm at Proposition 2.1.
I have initialized the elliptic curve as
m0=13293998056584952174157235; E=ellinit([0,-432*m0]);
I tried to use the rational points found in
https://arxiv.org/abs/math/0403116
where the curve is apparently defined as
E=ellinit([0,1,0,0,44182596082121121317135170025680399046545625711306]);
and its independent points as
Pvec=[[-30156002278649820, 4093799681127459731025817],[11364087102067560, 6756491872572362690626342],[-20835788771691894, 5927660006237675713476241],[1134264920569989390, 1208031685828825118221478017],[8907565209691176834, 26585114133655761890666064910],[111849199886121334, 37992674604901443769570910],[11724873521668020, 6767159346634715672034457],[-138658831412368575/4, 12719819443574268333325811/8],[165971060901522240, 67941788876402816577138982],[994768217796990, 6647073075327662243966017],[532896351059436225/16, 576457310785324883248677823/64]]but I can't replicate the result
max{h_x(P_i) | 1 ≤ i ≤ 11} = 76.61
and so must be doing something (several things?) wrong.
You should use a variant of my little game!M=Mat(apply(P->my([X,Y]=P);[X*Y,-X^2,Y,-X,-1],Pvec)~);V=apply(P->my([X,Y]=P);X^3-Y^2,Pvec)~;matsolve(M,V)%17 = [0,0,1,0,44182596082121121317135170025680399046545625711306]~So you see, the curve equation is not quite right.Cheers,BIll. I’m interested in what games you can play with 107122676734733201
Regards Kevin |