Bill Allombert on Wed, 09 Oct 2024 19:49:20 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: question on mapping points from an elliptic curve back to a quartic
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: question on mapping points from an elliptic curve back to a quartic
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 9 Oct 2024 19:49:15 +0200
- Delivery-date: Wed, 09 Oct 2024 19:49:20 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1728496157; bh=6LeZoavjGdhUhnpyIMM1WeyqtwGVNieiI8jxFKnUAyc=; h=Date:From:To:References:In-Reply-To:From; b=eVZtbbt1yyZSjdXmvEy7yx8aHf7tdmcc3wzRNDrPJpoh8Z9hjejDR8xvwKOOkdgye 0AR2uDM4XNqd7CdNXrAEj5IYCx1Ay+XD0LEA55USUtESJsjpoX9qbrl0fzyN5YQ081 JXhFnevr2WXqTr/QH7436Q5DsLIf3yRH5fWtKHbJpLv7VJt8vRp3/h+we7SYImQxNH X8uds32gzH3YkhCGOhs0oT67d6U9Zf6ovVbxb/wI299b6hhFqeEAHAFWP5YBo4PlaQ QOnQxqS4rzFAfig0MEtBbFki2jFeOJ9IIK+Gs+mbticYQ2pvb6zWfDhP+TwCFEPBnT 4/RqdfjGF9EsqYxf5ZOrIF2iW3mYCzOzjui3i+ohHqoDI21TRRkzGz03PLGm7PQtTG WYDwTwdhIkTX5cm5HcsR9EqsqCRJEUk+Itwwwe+3P18YcSnLyGIZVtHAWzHK/NfkA9 m219hPFc7+IIwxQT+eCKQSSHxSAiXY4o65Iy0wcPQfeUgLQvo5+JhcXcfJcDJ3kEnd rSADP/W56dS8AVowSa0GuNdnjFi7PHAVvjSx9oLY4lf8iDfE5bU2pAGrwBSDKe9wua effZNCPRJ0ry278xkVKKoOVRHMekPtrKWj+aSYpY/WsD5HXghfd2z9+ZeJin6wyNmZ KAgjNNIY/QvVtZ+80oqRDpPk=
- In-reply-to: <Zwa99zKUYJfzFOgA@seventeen>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <7bc938f8-69b6-4906-b965-50c0bd0e6968@gmail.com> <Zwa99zKUYJfzFOgA@seventeen>
On Wed, Oct 09, 2024 at 07:31:35PM +0200, Bill Allombert wrote:
> On Wed, Oct 09, 2024 at 09:54:10AM -0700, American Citizen wrote:
> > Suppose we consider a quartic with rational points
> >
> > Q(x,y) : -x^4 + 39/380*x^3 + 39/380*x + 1 = y^2
> >
> > Question:
> >
> > Why are most of the points in the elliptic curve pool L unmappable back to
> > Q(x,y)? This is surprising to me, as I believed that all the rational points
> > on E were mappable back to Q(x,y)?
>
> Q is a 2-cover of E, so only the points in [2]E(\Q) are mappable back to Q.
And to answer your question quantitatively:
E ~ Z^3 x Z/2Z
[2]E ~ (2Z)^3 x 0Z/2Z
E/[2]E ~ (Z/2Z)^4
[E:[2]E]=16 so a point on E has proba 1/16 to be mappable back to Q.
Cheers,
Bill