hermann on Sun, 12 Jan 2025 02:01:17 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: What’s the equivalent of Mathematica’s Function in Pari/Gp |
On 2025-01-11 22:59, Laël Cellier wrote:
given I can’t afford buying mathematica ?
There is an easy trick running Mathematica for free: https://www.wolfram.com/legal/agreements/wolfram-mathematica-raspberry-pi/"... WRI grants You a non-exclusive license to use the Product solely for personal or educational purposes on a Raspberry Pi computer ..."
I had many Raspberry computers before.I bought the fastest (the Pi5) only for having a fast and free Mathematica execution environment.
The Pi5 runs with 2.4GHz default.I was winner in chip lottery, was able to run it overclocked with 3GHz and force-turbo for weeks (3GHz permanently, now commented out):
pi@raspberrypi5:~ $ tail -2 /boot/firmware/config.txt #arm_freq=3000 #force_turbo=1 pi@raspberrypi5:~ $ You can buy cheapest (2GB Ram) Pi5 for 50 USD only.Only accessoir you need to buy in addition is active cooler for 5.95 USD to avoid burning the CPU.
https://forums.raspberrypi.com/download/file.php?id=65405I have seldom need to use Mathematica because I do nearly everything with PARI/GP since quite some time. But it is good being able to just use it ...
simple question, in mathematica, I can write something like this :Solve[((25)^2 + x RSA260)/(y) == (Floor[RSA260^(1/2)] + 1)^2, {x, y}, Integers]where RSA260 is variable, and it returns me a value of x and y for which the equation is true. Given the intent is clear even without understand the Mathematica’s language, what’s the equivalent of this Paris/Gp
pi@raspberrypi5:~ $ wolfram Mathematica 14.1.0 Kernel for Linux ARM (64-bit) Copyright 1988-2024 Wolfram Research, Inc.In[1]:= RSA260=221128255295296664352810852550262309276120895024700153944137483191288229414020019865127297265697465990859
003300314000511707422045608592763579537571859542988389587092292384910067030341246205457845664136645406842143612930176940 20846391065875914794251435144458199Out[1]= 22112825529529666435281085255026230927612089502470015394413748319128822941402001986512729726569746599085900330\
03140005117074220456085927635795375718595429883895870922923849100670303412462054578456641366454068421436129301769\
4020846391065875914794251435144458199
In[2]:= Solve[((25)^2 + x RSA260)/(y) == (Floor[RSA260^(1/2)] + 1)^2, {x, y}, Integers]
Out[2]= {{x -> ConditionalExpression[104950442476936846355633461335106831855305632251003989407101101451057951229673392\
343776772452527721977065553705922254586142641494385727067450430472084032114945410140849686725952604747493302\
14565087861455459241427372303571065761871140566881851095906049654992837 +
2211282552952966643528108525502623092761208950247001539441374831912882294140200198651272972656974659908590033\
00314000511707422045663412222446877343849596346005808142408153081876256070646709168646852511804036098593787\
94669961340279885370629131877531341079359556 C[1],
(C[1] ∈ Integers && C[1] >= 0) || (C[1] ∈ Integers && C[1] <= -1)],
y -> ConditionalExpression[1049504424769368463556334613351068318553056322510039894071011014510579512296733923437\
767724525277219770655537059222545861426414943597090153621050598882612129076043803044761397147779660347007377\
1090674598247995429411206087834031488640531845483210456376624365673 +
2211282552952966643528108525502623092761208950247001539441374831912882294140200198651272972656974659908590033\
00314000511707422045608592763579537571859542988389587092292384910067030341246205457845664136645406842143612\
93017694020846391065875914794251435144458199 C[1],
(C[1] ∈ Integers && C[1] >= 0) || (C[1] ∈ Integers && C[1] <= -1)]}}
In[3]:= Regards, Hermann.