Bill Allombert on Fri, 17 Jan 2025 00:44:37 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: deciding whether two padic extensions are isomorphic
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: deciding whether two padic extensions are isomorphic
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Fri, 17 Jan 2025 00:44:30 +0100
- Delivery-date: Fri, 17 Jan 2025 00:44:37 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1737071075; bh=yAUJkK9F0HbBtRiPIgnqdy91oUSR80JTRsmxfgcX4YU=; h=Date:From:To:Subject:References:In-Reply-To:From; b=LV8yU4GRpkDpGhW3TeLuZwspem4ZMqE+HuTBkP+Qn1IpF293PH1OFDk/7KvLGMu8J RVcorDpSOFo9j8m4vxN1VIP/PHiJHulLFNc6RonwntNVoOcz1sOmY39JyrTQjRs9uW n6yf2/BWgQ7gvdBsQ7HR2Ulp1RelCwfni7Yk+aHhDqU7IjLBP16KUrVUJAd2JuPMaj /LFF30BYIrVP6ayUlwTiHnVE0ZLco8UYTsJoAX+UrUPS4l6AN7f13cRhfjK5v7M1Hy QgVNGq6XcOklcKcwy0ZFR8glQ3BjlhGlYCuwe+BdQbLz6jG73EpT+4n57IAfWa/UJy 9mHdcOk1+8QFD9yMcQNGkUo7BeKbLDIBPeCSGX3cjZK2Mo6GsXXtTQLJ5vYAP8F87+ PqVI35fqWilFyWoGFRam87y3EKbZuyQBGibWZHYZQUKCRndmZCOzvtYPjKQTkh1j8x y5ROY/hTVCUjop9X9nYxcr4Bhrqhse8phTWChGPDw2FxEmu9syIZ5QEnglS1/MZ4SR gAfusmkTiD1nubzuRKDgxp4r5OgfEuHDT4uYBzVm4KH+x1RnjThPiT+LAxuSilkUVG piZH7+gpn/dlfqv69gSrzY5NgMbnaXwVmAMu1Kx3nJl57Z28izZ2KzCQ1UYZl36GVj xIIUYLPJuA2OYV3WJKId/1vA=
- In-reply-to: <CAD0p0K7HY8KuoDfK-6Q72m_w1LD1FcVAyjx6P+Pir=60nJMi2Q@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <59c603fe-07ae-4339-9211-c705950032b3@colby.edu> <Z4bJxSEkQmMncYmk@seventeen> <229150d4-32a0-42c2-b8f5-bf9320d8291e@colby.edu> <CAD0p0K5MA3uX5ndWAstv3Erm7j25p595d-cbfG70d6ckiU4WUQ@mail.gmail.com> <ae11e434-ae88-46a1-9d47-2ad38e08f588@colby.edu> <CAD0p0K7HY8KuoDfK-6Q72m_w1LD1FcVAyjx6P+Pir=60nJMi2Q@mail.gmail.com>
On Thu, Jan 16, 2025 at 05:56:05PM +0000, John Cremona wrote:
> On Thu, 16 Jan 2025 at 15:09, Fernando Gouvea <fqgouvea@colby.edu> wrote:
> >
> > Aha! Since it's C2xC2 even over Q, it should be something simple, and it is. Playing with my "new" tool,
> >
> > gp> pol=x^4 + 2*x^3 + 11*x^2 + 10*x + 4
> > %17 = x^4 + 2*x^3 + 11*x^2 + 10*x + 4
> > gp > polcompositum(pol,x^2+x+1)
> > %18 = [x^4 + 5*x^2 + 1, x^4 + 17*x^2 + 25]
> > gp > polcompositum(pol,x^2+7)
> > %24 = [x^4 - 2*x^3 + 11*x^2 - 10*x + 4, x^4 - 2*x^3 + 39*x^2 - 38*x + 172]
> >
> > So the field defined by f is Q(sqrt(-7),omega), where omega^3=1. Since -7 is congruent to 2 mod 3, over the 3-adics adjoining sqrt(-7) is the same as adjoining sqrt(2).
>
> Excellent. And it appears that we can test whether an integer a is a
> square in the p-adic field defined by a polynomial f by computing
> polcompositum(f,x^2-a) and seeing whether the result has the same
> degree as f (or double).
>
> Does that look right to you, Bill?
You need to call factorpadic on the result of polcompositum.
Cheers,
Bill.