Denis Simon on Thu, 13 Feb 2025 14:45:20 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to find a solution to this equation so the result is a perfect square ? |
Hi, Let a = 53919893334301279589334030174040979997534463873026188556492192357233 and N = 20422354090808007360481140437163150058277495681745577657420405131241 Let Z^2 be the final square. Basicly, what you want to solve is Y^2+a*X=N*Z^2 which is equivalent to Y^2-N*Z^2 = 0 mod a. Hence, what you need is to find a square root of N modulo a. This task is difficult and usually requires the factorisation of a. If s denotes such a square root, then you can choose Z randomly and set Y = lift(Mod(s*Z,a)); X = (Y^2-N*Z^2)/a; Denis SIMON. ----- Mail original ----- > De: "Laël Cellier" <lael.cellier@laposte.net> > À: "pari-users" <pari-users@pari.math.u-bordeaux.fr> > Envoyé: Jeudi 13 Février 2025 11:33:24 > Objet: How to find a solution to this equation so the result is a perfect square ? > Bonjour, > simple question, I’ve the following expression : (y² + > X×53919893334301279589334030174040979997534463873026188556492192357233)÷20422354090808007360481140437163150058277495681745577657420405131241 > for example, > X=102111770454040036802405702185845298473875351094786902380116798296 and > y=21 leads to > 269599466671506397946670150870282914247971805150249613489807500649 which > is the perfect square of 519229685853482762853049632922093 > > I want to find 1 or more set of integer x and y such as the end result > is a perfect square. But how to do it if the divisor is different than > 20422354090808007360481140437163150058277495681745577657420405131241 ? > Cordialement,