Karim Belabas on Fri, 14 Feb 2025 15:31:49 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: t_PADIC to t_INTMOD and use of chinese()
|
- To: Max Alekseyev <maxale@gmail.com>
- Subject: Re: t_PADIC to t_INTMOD and use of chinese()
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Fri, 14 Feb 2025 15:31:45 +0100
- Cc: Pari Users <pari-users@pari.math.u-bordeaux.fr>
- Delivery-date: Fri, 14 Feb 2025 15:31:49 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1739543507; bh=qxxdgiIYYfBQoFyNmmQUE5t/S/DVLaD7FPsKYIoFanY=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=Sh2M62gmElkoZ7znh6KTPU+CVWC0VD6GTR+YxyPL8FGssCi55Dwjfq85e1KXH8wpA dJwr5V5MwoAFiS+SjvtuTPx3lpbeaO1govf6BgD1feoy33AUPeiGbYs7v/N07XWtC9 SGFZqJ2tYqWea8F8+M6Mk6vGxzunPSX/mTifvFN8f/+QkR9i9hbWabYHwLhkr9a5h+ td3xjjPXsQ5BtujkRE4+/6xBQU8toczCPAbNORPin4c5JkNGcsEm+P42pkxUB7YDK/ K8WUsdWe++/f62w510swQ5qjiWyYj+0trLHITaT6p/XWKMOuQ4rwHWX49TFjlb2d3/ Vf23Iguh7nVxqpDUdMQoTd+Szur2PaL5mkv3ZsuaLZ3h45w/tJvHh8M9WIDnX1TPOH NJfuDkTjPISqy5qKapA4ZorxQsQnNKjsSSGktc1luf44BpUGoZlAVWm98O+MhqWHoa 4H6hj5Nl0OUZIdVLJ7dLVgOxjzEVr7K8cbcmnmnybsAPeq/ughjspH/rPuaCOpgzMN o1J/hNYkB0Ieaq2XswCMqx1fwNEss4xJRTmK6KrdRhh/0aBxNtJx9Q8v+2vlxia3/0 Crt6s15uwLi3p8ntfEyTUGwvSCJoHi5e09rkXyCQadQ3xgZ+TA8XNlil56fbylbxgb gjoX9foGMVNMBcIRwlNXtobI=
- In-reply-to: <CAJkPp5P7pSEF9nxYt24EVujTyWhQoz5f_dnp+wzpw90+A+Q8Wg@mail.gmail.com>
- Mail-followup-to: Max Alekseyev <maxale@gmail.com>, Pari Users <pari-users@pari.math.u-bordeaux.fr>
- References: <CAJkPp5P7pSEF9nxYt24EVujTyWhQoz5f_dnp+wzpw90+A+Q8Wg@mail.gmail.com>
* Max Alekseyev [2025-02-14 15:09]:
> dueHello,
>
> I have a couple of requests:
>
> 1) An easy way to convert t_PADIC to t_INTMOD, maybe extending Mod() to
> support a single argument of type t_PADIC, e.g. Mod(1 + O(5^2)) would
> produce Mod(1, 25).
padic2mod(x) = Mod(x, x.p^padicprec(x, x.p));
? padic2mod(1+O(5^2))
%1 = Mod(1, 25)
? padic2mod(5+O(5^2))
%2 = Mod(5, 25)
? padic2mod(1/5+O(5^2))
*** Mod: inconsistent t_PADIC , t_INTMOD.
> 2) Extend chinese() to support t_PADIC arguments (still producing t_INTMOD).
padicchinese(v) = chinese(apply(padic2mod, v))
? padicchinese([1 + O(5^2), 3 + O(3^3)])
%3 = Mod(651, 675)
Cheers,
K.B.
--
Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/