| 
	American Citizen on Fri, 28 Mar 2025 04:35:40 +0100
	 | 
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
	
	| 
        question on converting general cubic equations to Weierstrass format
	 | 
 
- To: pari-users <pari-users@pari.math.u-bordeaux.fr>
 
- Subject: question on converting general cubic equations to Weierstrass format
 
- From: American Citizen <website.reader3@gmail.com>
 
- Date: Thu, 27 Mar 2025 20:35:33 -0700
 
- Delivery-date: Fri, 28 Mar 2025 04:35:40 +0100
 
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed;        d=gmail.com; s=20230601; t=1743132936; x=1743737736; darn=pari.math.u-bordeaux.fr;        h=content-transfer-encoding:subject:from:to:content-language         :user-agent:mime-version:date:message-id:from:to:cc:subject:date         :message-id:reply-to;        bh=BsZH+qrdWL4WamwmfYjN2l8XeaoVW6wnbGyrGIQm63A=;        b=MO7gtu5elN2bKLgiDziJ221K1lZ6l0PMYVt+WzIH0LBNDZlEutYioazv/63+XhDXVv         nNYSNOdRiJXAROmUtiauAnnr95fKzDbXKXKSrKyNjmDRZ6xloQwhk+OJb7rWHBVFiF1x         SFO6fCNlGs7iHVx+yxoICUfLzSZ/AnURFidRHmyUoLesgW9RIdW5vGVwE0OJOYiI8qaR         048U+5c2k5H1Z1nbMGU/bkIeYuitF50d+lYHJsbOrSYcG6u8kWBIUMyQn1ptL+s3L/Om         KaeRgEzMGG+GwacSBAXOQ+/5aG3pihLnoojjrUuebJRvVEUsGSHJWIbyXKVYdqz2kV6P         V69A==
 
- User-agent: Mozilla Thunderbird
 
Recent changes in GP-Pari has unfortunately rendered my code relating to 
cuboids (body/edge/face) non-functional as testing has found out today.
For example, exploring body cuboids, I have the general cubic equation 
(where a,b is found from a Pythagorean ratio r, such as r = 3/4, i.e. 
a=3 and b=4 where a is the numerator of r and b is the denominator of r.
B(a,b) = 0 * X^3 - 4*a*b * X^2*Y + 2*(a^2-b^2) * X*Y^2 + 0 * Y^3 + 0 * 
X^2*Z + 2*(b^2+2*a*b-a^2) * X*Y*Z + 0 * Y^2*Z + 0 * X*Z^2 + 0 * Y*Z^2 + 
0 * Z^3
I would like to find the Weierstrass normal form for this equation, i.e 
[a1,a2,a3,a4,a6] where y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6
For the edge and face cuboids I also have
E(a,b) = a*v*(u*u+1) - b*u*(v*v+1) = 0
F(a,b) = (a^2+b^2)*u*(v^2-1) - 2*a*b*(u^2-1)*v
where a,b are given parameters and u,v are the general variables.
I am seeking the Weierstrass normal form for all 3 equations, B(a,b), 
E(a,b) and F(a,b)
Randall