Bill Allombert on Mon, 05 May 2025 15:21:30 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: reversing a series modulo
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: reversing a series modulo
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 5 May 2025 15:21:27 +0200
- Delivery-date: Mon, 05 May 2025 15:21:30 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1746451288; bh=cRBkguzW8tjORQc6ZHkGmIs8hEDTkC3qKH6mOvMwXUw=; h=Date:From:To:Subject:References:In-Reply-To:From; b=F6RB9YNVHdSf/ZEEOlwJEo0kJyvZgLS+bKV9k94YXx7TNgnHrd9wo3EdwERwVnZUA 7JYSx707MfUHy4fCZr3XBS9nrGqbMElIn2muU1H6nqCDbttVqTsukPPOaO1HKtrLhl qPzjp9idRWEWKLfitXuO79NG1soiBUraY2Bv+4GE7LOXn2NFWYs5/zgnwUeM3Gibk8 eiqViTWsLfdPyYJ1hOH5/apQJqvRQusZ2N3a6ZDjwWigiRdKs9+pVq2JRARekXAL2D msgFMk/ywLeZ3bxPt/AkT4J7jR6DjX3HM9HiX9aTHGyb975jO466CHiIAvLSr/g+gL LCAWG5WlMUzgG4GlWDCkeCotll/01EKUXgFkKNdd+4HeJZ/FRhgpvL4MPj7hDY200p F7sZeLw1I391AZXMcZl84R7u7ger6tbQ9C01huRrduZ11wpofis47izl7bzwX0LGMz gyBiBZAznez2AA9ZqMy6G4SRjoSbzb6ZxqXTyURGO1kFIXl6Gc0sUfQjuF9Zf2X+Cf S8jfvdcDIXsQ0RMXeF+MdYL7FhSDi/xHXbv/Pct2JLCuhsoL3Zwexrj7kJZrt5r2Sf ax7hZCiYtDXWg10Ma2QFTF9+Qnw161zwVIzr6Yfd/cC1v0woL0EVZaI96OV3fexRcd Fk89zPNCw7qTSRyJdkn6OWwY=
- In-reply-to: <CAJkPp5N+w3KPq9-u1dAd1x4Er_x--zBmknr=v3sUyorYpgKVkQ@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAJkPp5N+w3KPq9-u1dAd1x4Er_x--zBmknr=v3sUyorYpgKVkQ@mail.gmail.com>
On Sat, May 03, 2025 at 02:38:33PM -0400, Max Alekseyev wrote:
> Hello,
>
> Reversing a series and taking it modulo 5 works, but not the opposite way
> around. Why?
>
> ? f = x + x^2 + 4*x^6 + 4*x^7 + x^11 + x^12 + 4*x^16 + 4*x^17 + O(x^21)
> %1 = x + x^2 + 4*x^6 + 4*x^7 + x^11 + x^12 + 4*x^16 + 4*x^17 + O(x^21)
> ? serreverse(f) * Mod(1,5)
> %2 = Mod(1, 5)*x + Mod(4, 5)*x^2 + Mod(2, 5)*x^3 + Mod(4, 5)*x^5 + Mod(4,
> 5)*x^6 + Mod(2, 5)*x^8 + Mod(3, 5)*x^10 + Mod(3, 5)*x^11 + Mod(4, 5)*x^12 +
> Mod(4, 5)*x^17 + Mod(3, 5)*x^18 + O(x^21)
> ? serreverse(f * Mod(1,5))
> *** at top-level: serreverse(f*Mod(1,5))
> *** ^----------------------
> *** serreverse: impossible inverse in Fl_inv: Mod(0, 5).
The formula used by PARI is
g=intformal(1/subst(f',x,g))
which involves division by small primes (when integrating)
What you can do is
? serreverse(f*(1+O(5^2)))*Mod(1,5)
%34 = Mod(1, 5)*x + Mod(4, 5)*x^2 + Mod(2, 5)*x^3 + Mod(4, 5)*x^5 + Mod(4, 5)*x^6 + Mod(2, 5)*x^8 + Mod(3, 5)*x^10 + Mod(3, 5)*x^11 + Mod(4, 5)*x^12 + Mod(4, 5)*x^17 + Mod(3, 5)*x^18 + O(x^21)
Cheers,
Bill