Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - lerch.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.0 lcov report (development 29818-b3e15d99d2) Lines: 354 367 96.5 %
Date: 2024-12-27 09:09:37 Functions: 23 23 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2022  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : #define DEBUGLEVEL DEBUGLEVEL_trans
      19             : 
      20             : /********************************************************/
      21             : /*                   Hurwitz zeta function              */
      22             : /********************************************************/
      23             : struct Qp_zetahurwitz_t { GEN B, _1, s1; };
      24             : static void
      25         301 : Qp_zetahurwitz_init(struct Qp_zetahurwitz_t *S, long prec, GEN s)
      26             : {
      27         301 :   GEN B, C = gen_1, s1 = gsubgs(s, 1), p = gel(s, 2);
      28         301 :   long j, J = ((equaliu(p,2)? (prec >> 1): prec) + 2) >> 1;
      29         301 :   if (gequal0(s1)) s1 = NULL;
      30         301 :   B = bernvec(J);
      31        3346 :   for (j = 1; j <= J; j++)
      32             :   {
      33        3045 :     GEN t = (j == 1 && !s1)? s: gmul(gaddgs(s, 2*j-3), gaddgs(s, 2*j-2));
      34        3045 :     C = gdivgunextu(gmul(C, t), 2*j-1);
      35        3045 :     gel(B, j+1) = gmul(gel(B, j+1), C); /* B_{2j} * binomial(1-s, 2j) */
      36             :   }
      37         301 :   S->_1 = cvtop(gen_1, p, prec);
      38         301 :   S->s1 = s1;
      39         301 :   S->B = B;
      40         301 : }
      41             : 
      42             : /* v_p(x) < (p==2)?-1: 0; s1 = s-1 or NULL (if s=1) */
      43             : static GEN
      44        1218 : Qp_zetahurwitz_0(struct Qp_zetahurwitz_t *S, GEN x)
      45             : {
      46        1218 :   GEN z, x2, x2j, s1 = S->s1;
      47        1218 :   long j, J = lg(S->B) - 2;
      48             : 
      49        1218 :   x = cvtop2(ginv(x), S->_1); z = gmul2n(x, -1);
      50        1218 :   z = s1? gmul(s1, z): gadd(Qp_log(x), z);
      51        1218 :   x2j = x2 = gsqr(x); z = gaddgs(z, 1);
      52        1218 :   for (j = 1;; j++)
      53             :   {
      54       21525 :     z = gadd(z, gmul(gel(S->B, j + 1), x2j));
      55       21525 :     if (j == J) break;
      56       20307 :     x2j = gmul(x2, x2j);
      57             :   }
      58        1218 :   if (s1) z = gmul(gdiv(z, s1), Qp_exp(gmul(s1, Qp_log(x))));
      59        1218 :   return z;
      60             : }
      61             : /* private (absolute) padicprec */
      62             : static long
      63         546 : pprec(GEN x) { return maxss(valp(x) + precp(x), 1); }
      64             : 
      65             : /* L_p(s, (D, .)); assume s != 1 if D = 1 */
      66             : static GEN
      67          14 : Qp_zeta_i(GEN s, long D)
      68             : {
      69          14 :   pari_sp av = avma;
      70          14 :   GEN z, va, gp = gel(s,2);
      71          14 :   ulong a, p = itou(gp), m;
      72          14 :   long prec = pprec(s);
      73             :   struct Qp_zetahurwitz_t S;
      74             : 
      75          14 :   if (D <= 0) pari_err_DOMAIN("p-adic L-function", "D", "<=", gen_0, stoi(D));
      76          14 :   if (!uposisfundamental(D))
      77           0 :     pari_err_TYPE("p-adic L-function [D not fundamental]", stoi(D));
      78          14 :   Qp_zetahurwitz_init(&S, prec, s);
      79          14 :   m = ulcm(D, p == 2? 4: p); va = coprimes_zv(m);
      80          42 :   for (a = 1, z = gen_0; a <= (m >> 1); a++)
      81          28 :     if (va[a])
      82             :     {
      83          21 :       GEN h = Qp_zetahurwitz_0(&S, uutoQ(a, m));
      84          21 :       if (D != 1 && kross(D, a) < 0) h = gneg(h);
      85          21 :       z = gadd(z, h);
      86             :     }
      87          14 :   z = gdivgs(gmul2n(z, 1), m);
      88          14 :   if (D != 1) z = gmul(z, Qp_exp(gmul(gsubsg(1, s), Qp_log(cvstop2(m, s)))));
      89          14 :   return gerepileupto(av, z);
      90             : }
      91             : GEN
      92          14 : Qp_zeta(GEN s) { return Qp_zeta_i(s, 1); }
      93             : 
      94             : /* s a t_PADIC; gerepileupto-safe. Could be exported */
      95             : static GEN
      96         287 : Qp_zetahurwitz_ii(GEN s, GEN x, long k)
      97             : {
      98         287 :   GEN gp = gel(s,2);
      99         287 :   long p = itou(gp), prec = pprec(s);
     100             :   struct Qp_zetahurwitz_t S;
     101         287 :   Qp_zetahurwitz_init(&S, prec, s);
     102         287 :   if (typ(x) != t_PADIC) x = gadd(x, zeropadic_shallow(gp, prec));
     103         287 :   if (valp(x) >= ((p==2)? -1: 0))
     104             :   {
     105         280 :     GEN z = gen_0;
     106         280 :     long j, M = (p==2)? 4: p;
     107        1869 :     for (j = 0; j < M; j++)
     108             :     {
     109        1589 :       GEN y = gaddsg(j, x);
     110        1589 :       if (valp(y) <= 0)
     111             :       {
     112        1190 :         GEN tmp = Qp_zetahurwitz_0(&S, gdivgu(y, M));
     113        1190 :         if (k) tmp = gmul(tmp, gpowgs(teich(y), k));
     114        1190 :         z = gadd(z, tmp);
     115             :       }
     116             :     }
     117         280 :     return gdivgu(z, M);
     118             :   }
     119           7 :   if (valp(s) < 0) pari_err_DOMAIN("Qp_zetahurwitz", "v(s)", "<", gen_0, s);
     120           7 :   return Qp_zetahurwitz_0(&S, x);
     121             : }
     122             : 
     123             : /* x or s must be p-adic */
     124             : static GEN
     125         287 : Qp_zetahurwitz_i(GEN s, GEN x, long k)
     126             : {
     127         287 :   if (typ(x) == t_PADIC)
     128             :   {
     129         245 :     pari_sp av = avma;
     130         245 :     GEN p = gel(x,2);
     131         245 :     long e = pprec(x);
     132         245 :     e += sdivsi(e, subis(p, 1));
     133         245 :     s = gadd(s, zeropadic_shallow(p, e));
     134         245 :     return gerepileupto(av, Qp_zetahurwitz_ii(s, x, k));
     135             :   }
     136          42 :   return Qp_zetahurwitz_ii(s, x, k);
     137             : }
     138             : 
     139             : GEN
     140         238 : Qp_zetahurwitz(GEN s, GEN x, long k)
     141             : {
     142         238 :   pari_sp av = avma;
     143         238 :   return gerepileupto(av, Qp_zetahurwitz_i(s, x, k));
     144             : }
     145             : 
     146             : static void
     147        8596 : binsplit(GEN *pP, GEN *pR, GEN aN2, GEN isqaN, GEN s, long j, long k, long prec)
     148             : {
     149        8596 :   if (j + 1 == k)
     150             :   {
     151        4347 :     long j2 = j << 1;
     152             :     GEN P;
     153        4347 :     if (!j) P = gdiv(s, aN2);
     154             :     else
     155             :     {
     156        4249 :       P = gmul(gaddgs(s, j2-1), gaddgs(s, j2));
     157        4249 :       P = gdivgunextu(gmul(P, isqaN), j2+1);
     158             :     }
     159        4347 :     if (pP) *pP = P;
     160        4347 :     if (pR) *pR = gmul(bernreal(j2+2, prec), P);
     161             :   }
     162             :   else
     163             :   {
     164             :     GEN P1, R1, P2, R2;
     165        4249 :     binsplit(&P1,pR? &R1: NULL, aN2, isqaN, s, j, (j+k) >> 1, prec);
     166        4249 :     binsplit(pP? &P2: NULL, pR? &R2: NULL, aN2, isqaN, s, (j+k) >> 1, k, prec);
     167        4249 :     if (pP) *pP = gmul(P1,P2);
     168        4249 :     if (pR) *pR = gadd(R1, gmul(P1, R2));
     169             :   }
     170        8596 : }
     171             : 
     172             : /* a0 +  a1 x + O(x^e), e >= 0 */
     173             : static GEN
     174          77 : deg1ser_shallow(GEN a1, GEN a0, long v, long e)
     175          77 : { return RgX_to_ser(deg1pol_shallow(a1, a0, v), e+2); }
     176             : 
     177             : static long
     178         532 : hurwitz_cutoff(GEN s, long bit)
     179             : {
     180         581 :   return typ(s) == t_COMPLEX &&
     181          49 :          fabs(gtodouble(gel(s,2))) > 5.37 * pow(bit, 1.4) / mt_nbthreads();
     182             : }
     183             : 
     184             : /* New zetahurwitz, from Fredrik Johansson. */
     185             : GEN
     186         665 : zetahurwitz(GEN s, GEN x, long der, long bitprec)
     187             : {
     188         665 :   pari_sp av = avma, av2;
     189         665 :   GEN a, ra, ra0, Nx, S1, S2, S3, N2, rx, sch = NULL, s0 = s, x0 = x, y;
     190         665 :   long j, k, m, N, prec0 = nbits2prec(bitprec), prec = prec0, fli = 0;
     191             :   pari_timer T;
     192             : 
     193         665 :   if (typ(s) == t_PADIC || typ(x) == t_PADIC)
     194          49 :     return gerepileupto(av, Qp_zetahurwitz_i(s, x, der));
     195         616 :   if (der < 0) pari_err_DOMAIN("zetahurwitz", "der", "<", gen_0, stoi(der));
     196         616 :   if (der)
     197             :   {
     198             :     GEN z;
     199          21 :     if (!is_scalar_t(typ(s)))
     200             :     {
     201           7 :       z = deriv(zetahurwitz(s, x, der - 1, bitprec), -1);
     202           7 :       z = gdiv(z, deriv(s, -1));
     203             :     }
     204             :     else
     205             :     {
     206          14 :       if (gequal1(s)) pari_err_DOMAIN("zetahurwitz", "s", "=", gen_1, s0);
     207          14 :       s = deg1ser_shallow(gen_1, s, 0, der+2);
     208          14 :       z = zetahurwitz(s, x, 0, bitprec + der * log2(der));
     209          14 :       z = gmul(mpfact(der), polcoef_i(z, der, -1));
     210             :     }
     211          21 :     return gerepileupto(av,z);
     212             :   }
     213         595 :   switch(typ(x))
     214             :   {
     215         434 :     case t_INT: case t_REAL: case t_FRAC: case t_COMPLEX: break;
     216         161 :     default:
     217         161 :       if (!(y = toser_i(x))) pari_err_TYPE("zetahurwitz", x);
     218         154 :       x = y; x0 = polcoef_i(x, 0, -1); break;
     219             :   }
     220         588 :   rx = real_i(x0);
     221         588 :   if (typ(x) != t_SER && typ(rx) == t_INT && signe(rx) <= 0
     222          84 :                       && gequal0(imag_i(x0)))
     223           0 :     pari_err_DOMAIN("zetahurwitz","x", "=",
     224             :                      strtoGENstr("nonpositive integer"), x0);
     225         588 :   rx = grndtoi(rx, NULL);
     226         588 :   if (typ(rx) != t_INT) pari_err_TYPE("zetahurwitz", x);
     227         588 :   switch (typ(s))
     228             :   {
     229             :     long v, pr;
     230         518 :     case t_INT: case t_REAL: case t_FRAC: case t_COMPLEX:
     231         518 :       if (!der && hurwitz_cutoff(s, bitprec))
     232           7 :         return zetahurwitzlarge(s, x, prec);
     233         511 :       break;
     234          70 :     default:
     235          70 :       if (!(y = toser_i(s))) pari_err_TYPE("zetahurwitz", s);
     236          70 :       if (valser(y) < 0) pari_err_DOMAIN("zetahurwitz", "val(s)", "<", gen_0, s);
     237          70 :       s0 = polcoef_i(y, 0, -1);
     238          70 :       switch(typ(s0))
     239             :       {
     240          63 :         case t_INT: case t_REAL: case t_FRAC: case t_COMPLEX: break;
     241           0 :         case t_PADIC: pari_err_IMPL("zetahurwitz(t_SER of t_PADIC)");
     242           7 :         default: pari_err_TYPE("zetahurwitz", s0);
     243             :       }
     244          63 :       sch = gequal0(s0)? y: serchop0(y);
     245          63 :       v = valser(sch);
     246          63 :       pr = (lg(y) + v + 1) / v;
     247          63 :       if (gequal1(s0)) pr += v;
     248          63 :       s = deg1ser_shallow(gen_1, s0, 0, pr);
     249             :     }
     250         574 :   a = gneg(s0); ra = real_i(a); ra0 = ground(ra);
     251         574 :   if (gequal1(s0) && (!sch || gequal0(sch)))
     252          14 :     pari_err_DOMAIN("zetahurwitz", "s", "=", gen_1, s0);
     253         560 :   fli = (gsigne(ra0) >= 0 && gexpo(gsub(a, ra0)) < 17 - bitprec);
     254         560 :   if (!sch && fli)
     255             :   { /* a ~ non negative integer */
     256          14 :     k = itos(gceil(ra)) + 1;
     257          14 :     if (odd(k)) k++;
     258          14 :     N = 1;
     259             :   }
     260             :   else
     261             :   {
     262         546 :     GEN C, ix = imag_i(x0);
     263         546 :     double c = (typ(s) == t_INT)? 1: 20 * log((double)bitprec);
     264         546 :     double rs = gtodouble(ra) + 1;
     265             :     long k0;
     266         546 :     if (fli) a = gadd(a, ghalf); /* hack */
     267         546 :     if (rs > 0)
     268             :     {
     269          49 :       bitprec += (long)ceil(rs * expu(bitprec));
     270          49 :       prec = nbits2prec(bitprec);
     271          49 :       x = gprec_w(x, prec);
     272          49 :       s = gprec_w(s, prec);
     273          49 :       if (sch) sch = gprec_w(sch, prec);
     274             :     }
     275         546 :     k = bitprec * M_LN2 / (1 + dbllambertW0(M_PI / c));
     276         546 :     k0 = itos(gceil(gadd(ra, ghalf))) + 1;
     277         546 :     k = maxss(k0, k);
     278         546 :     if (odd(k)) k++;
     279             :     /* R_k < 2 |binom(a,k+1) B_{k+2}/(k+2)| */
     280         546 :     C = binomial(a, k+1); C = polcoef_i(C, 0, -1);
     281         546 :     C = gmul(C, gdivgu(bernfrac(k+2), k+2));
     282         546 :     C = gmul2n(gabs(C,LOWDEFAULTPREC), bitprec + 1);
     283         546 :     C = gpow(C, ginv(gsubsg(k+1, ra)), LOWDEFAULTPREC);
     284             :     /* need |N + x - 1|^2 > C^2 */
     285         546 :     if (!gequal0(ix))
     286             :     {
     287         133 :       GEN tmp = gsub(gsqr(C), gsqr(ix));
     288         133 :       if (gsigne(tmp) >= 0) C = gsqrt(tmp, LOWDEFAULTPREC);
     289             :     }
     290             :     /* need |N + re(x) - 1| > C */
     291         546 :     C = gceil(gadd(C, gsubsg(1, rx)));
     292         546 :     if (typ(C) != t_INT) pari_err_TYPE("zetahurwitz",s);
     293         546 :     N = signe(C) > 0? itos(C) : 1;
     294         546 :     if (N == 1 && signe(a) > 0)
     295             :     { /* May reduce k if 2Pix > a */
     296             :       /* Need 2 |x^(-K) (B_K/K) binom(a, K-1)| < 2^-bit |x|^-rs |zeta(s,x)|
     297             :        * with K = k+2; N = 1; |zeta(s,x)| ~ |x|^(rs-1);
     298             :        * if a > 0, (B_K/K) binom(a, K-1) < 2 |a / 2Pi|^K */
     299           0 :       double dx = dbllog2(x0), d = 1 + dx + log2(M_PI) - dbllog2(s0);
     300           0 :       if (d > 0)
     301             :       { /* d ~ log2 |2Pi x / a| */
     302           0 :         long K = (long)ceil((bitprec + 1 + dx) / d);
     303           0 :         K = maxss(k0, K);
     304           0 :         if (odd(K)) K++;
     305           0 :         if (K < k) k = K;
     306             :       }
     307             :     }
     308             :   }
     309         560 :   if (gsigne(rx) < 0) N = maxss(N, 1 - itos(rx));
     310         560 :   a = gneg(s);
     311         560 :   if (DEBUGLEVEL>2) timer_start(&T);
     312         560 :   incrprec(prec);
     313         560 :   Nx = gaddsg(N - 1, x);
     314         560 :   Nx = typ(Nx) == t_SER? RgX_gtofp(Nx, prec): gtofp(Nx, prec);
     315         560 :   S1 = S3 = gpow(Nx, a, prec);
     316         560 :   av2 = avma;
     317         560 :   if (gequal1(x)) S1 = dirpowerssum(N, a, 0, prec);
     318             :   else
     319        7826 :     for (m = N - 2; m >= 0; m--)
     320             :     {
     321        7322 :       S1 = gadd(S1, gpow(gaddsg(m,x), a, prec));
     322        7322 :       if ((m & 0xff) == 0) S1 = gerepileupto(av2, S1);
     323             :     }
     324         560 :   if (DEBUGLEVEL>2) timer_printf(&T,"sum from 0 to N - 1");
     325         560 :   constbern(k >> 1);
     326         560 :   N2 = ginv(gsqr(Nx));
     327         560 :   if (typ(s0) == t_INT)
     328             :   {
     329         462 :     S2 = divru(bernreal(k, prec), k);
     330       10773 :     for (j = k - 2; j >= 2; j -= 2)
     331             :     {
     332       10311 :       GEN t = gsubgs(a, j), u = gmul(t, gaddgs(t, 1));
     333       10311 :       u = gmul(gdivgunextu(u, j), gmul(S2, N2));
     334       10311 :       S2 = gadd(divru(bernreal(j, prec), j), u);
     335             :     }
     336         462 :     S2 = gmul(S2, gdiv(a, Nx));
     337             :   }
     338             :   else
     339             :   {
     340          98 :     binsplit(NULL,&S2, gmul2n(Nx,1), N2, s, 0, k >> 1, prec);
     341          98 :     S2 = gneg(S2);
     342             :   }
     343         560 :   S2 = gadd(ghalf, S2);
     344         560 :   if (DEBUGLEVEL>2) timer_printf(&T,"Bernoulli sum");
     345         560 :   S2 = gmul(S3, gadd(gdiv(Nx, gaddsg(1, a)), S2));
     346         560 :   S1 = gprec_wtrunc(gsub(S1, S2), prec0);
     347         560 :   if (sch) return gerepileupto(av, gsubst(S1, 0, sch));
     348         504 :   return gerepilecopy(av, S1);
     349             : }
     350             : 
     351             : /* New Lerch, inspired by Fredrik Johansson. */
     352             : 
     353             : GEN
     354      153648 : lerch_worker(GEN t, GEN E)
     355             : {
     356      153648 :   GEN n, d, T, s = gel(E,1), a = gmul(gel(E,2), t), z = gel(E,3);
     357      153177 :   long p = itos(gel(E,4)), prec = labs(p);
     358      153188 :   d = gadd(gexp(t, prec), z);
     359      153512 :   T = p > 0? t: gneg(t);
     360      153557 :   if (typ(s) == t_INT)
     361       58396 :     n = gmul(gpow(T, s, prec), gexp(a, prec));
     362             :   else /* save one exp */
     363       95161 :     n = gexp(gadd(gmul(s, glog(T, prec)), a), prec);
     364      153739 :   return gdiv(n, d);
     365             : }
     366             : 
     367             : /* tab already computed with N = #tab[1] even */
     368             : static GEN
     369         441 : parintnumgauss(GEN f, GEN a, GEN b, GEN tab, long prec)
     370             : {
     371         441 :   GEN R = gel(tab, 1), W = gel(tab, 2), bma, bpa, S = gen_0, VP, VM, V;
     372         441 :   long n = lg(R) - 1, i, prec2 = prec + EXTRAPREC64;
     373         441 :   a = gprec_wensure(a, prec2);
     374         441 :   b = gprec_wensure(b, prec2);
     375         441 :   VP = cgetg(n + 1, t_VEC); bma = gmul2n(gsub(b, a), -1);
     376         441 :   VM = cgetg(n + 1, t_VEC); bpa = gadd(bma, a);
     377       28203 :   for (i = 1; i <= n; i++)
     378             :   {
     379       27762 :     GEN h = gmul(bma, gel(R, i));
     380       27762 :     gel(VP, i) = gadd(bpa, h);
     381       27762 :     gel(VM, i) = gsub(bpa, h);
     382             :   }
     383         441 :   V = gadd(parapply(f, VP), parapply(f, VM));
     384       28203 :   for (i = 1; i <= n; i++)
     385             :   {
     386       27762 :     S = gadd(S, gmul(gel(W, i), gel(V, i)));
     387       27762 :     S = gprec_wensure(S, prec2);
     388             :   }
     389         441 :   return gprec_wtrunc(gmul(bma, S), prec);
     390             : }
     391             : 
     392             : /* Assume tab computed and a >= 0 */
     393             : static GEN
     394         119 : parintnum(GEN f, GEN a, GEN tab)
     395             : {
     396             :   pari_sp av;
     397         119 :   GEN tabx0 = gel(tab, 2), tabw0 = gel(tab, 3), tabxm = gel(tab, 6);
     398         119 :   GEN tabxp = gel(tab, 4), tabwp = gel(tab, 5), tabwm = gel(tab, 7);
     399         119 :   GEN VP = tabxp, VM = tabxm, x0 = tabx0, S;
     400         119 :   long prec = gprecision(tabw0), L = lg(tabxp), i, fla = 0;
     401         119 :   if (!gequal0(a))
     402             :   {
     403          91 :     if (gexpo(a) <= 0)
     404             :     {
     405          63 :       x0 = gadd(a, x0);
     406       30357 :       for (i = 1; i < L; i++)
     407             :       {
     408       30294 :         gel(VP, i) = gadd(a, gel(VP, i));
     409       30294 :         gel(VM, i) = gadd(a, gel(VM, i));
     410             :       }
     411             :     }
     412             :     else
     413             :     {
     414          28 :       x0 = gmul(a, gaddsg(1, x0)); fla = 1;
     415        5404 :       for (i = 1; i < L; i++)
     416             :       {
     417        5376 :         gel(VP, i) = gmul(a, gaddsg(1, gel(VP, i)));
     418        5376 :         gel(VM, i) = gmul(a, gaddsg(1, gel(VM, i)));
     419             :       }
     420             :     }
     421             :   }
     422         119 :   VP = parapply(f, VP);
     423         119 :   VM = parapply(f, VM); av = avma;
     424         119 :   S = gmul(tabw0, closure_callgen1(f, x0));
     425       49257 :   for (i = 1; i < L; i++)
     426             :   {
     427       49138 :     S = gadd(S, gadd(gmul(gel(tabwp, i), gel(VP, i)),
     428       49138 :                      gmul(gel(tabwm, i), gel(VM, i))));
     429       49138 :     if ((i & 0x7f) == 1) S = gerepileupto(av, S);
     430       49138 :     S = gprec_wensure(S, prec);
     431             :   }
     432         119 :   if (fla) S = gmul(S, a);
     433         119 :   return gmul(S, gel(tab, 1));
     434             : }
     435             : 
     436             : static GEN
     437          84 : refine(GEN A)
     438             : {
     439          84 :   long n = lg(A) - 1, i;
     440          84 :   GEN B = cgetg(2 * n, t_VEC);
     441         231 :   for (i = 1; i < n; i++)
     442             :   {
     443         147 :     gel(B, 2 * i - 1) = gel(A, i);
     444         147 :     gel(B, 2 * i) = gmul2n(gadd(gel(A, i), gel(A, i + 1)), -1);
     445             :   }
     446          84 :   gel(B, 2 * n - 1) = gel(A, n); return B;
     447             : }
     448             : 
     449             : /* Here L = [a1, a2, a3,...] integration vertices. Refine by splitting
     450             :  * intervals. */
     451             : static GEN
     452          84 : parintnumgaussadapt(GEN f, GEN L, GEN tab, long bit)
     453             : {
     454          84 :   GEN Rold = gen_0, Rnew;
     455          84 :   long i, ct = 0, prec = nbits2prec(bit);
     456         168 :   while (ct <= 5)
     457             :   {
     458         168 :     Rnew = gen_0;
     459         609 :     for (i = 1; i < lg(L) - 1; i++)
     460         441 :       Rnew = gadd(Rnew, parintnumgauss(f, gel(L, i), gel(L, i + 1), tab, prec));
     461         168 :     if (ct && gexpo(gsub(Rnew, Rold)) - gexpo(Rnew) < 10 - bit) return Rnew;
     462          84 :     ct++; Rold = Rnew; L = refine(L);
     463             :   }
     464           0 :   if (DEBUGLEVEL) err_printf("intnumgaussadapt: possible accuracy loss");
     465           0 :   return Rnew; /* Possible accuracy loss */
     466             : }
     467             : 
     468             : /* Here b = [oo, r], so refine by increasing integration step m */
     469             : static GEN
     470          42 : parintnumadapt(GEN f, GEN a, GEN b, GEN tab, long bit)
     471             : {
     472          42 :   GEN Rold = gen_0, Rnew;
     473          42 :   long m = 0, prec = nbits2prec(bit);
     474          42 :   if (!tab) tab = intnuminit(gen_0, b, 0, prec);
     475         119 :   while (m <= 5)
     476             :   {
     477         119 :     Rnew = parintnum(f, a, tab);
     478         119 :     if (m && gexpo(gsub(Rnew, Rold)) - gexpo(Rnew) < 10 - bit) return Rnew;
     479          77 :     m++; Rold = Rnew; tab = intnuminit(gen_0, b, m, prec);
     480             :   }
     481           0 :   if (DEBUGLEVEL) err_printf("intnumadapt: possible accuracy loss");
     482           0 :   return Rnew; /* Possible accuracy loss */
     483             : }
     484             : 
     485             : static int
     486         210 : iscplx(GEN z) { long t = typ(z); return is_real_t(t) || t == t_COMPLEX; }
     487             : 
     488             : static GEN
     489          14 : lerch_easy(GEN z, GEN s, GEN a, long B)
     490             : {
     491          14 :   long n, prec = nbits2prec(B + 32);
     492          14 :   GEN zn, ms = gneg(s), S = gpow(a, ms, prec);
     493          14 :   zn = z = gtofp(z, prec);
     494        3808 :   for (n = 1;; n++, zn = gmul(zn, z))
     495             :   {
     496        3808 :     S = gadd(S, gmul(zn, gpow(gaddgs(a, n), ms, prec)));
     497        3808 :     if (gexpo(zn) <= - B - 5) return S;
     498             :   }
     499             : }
     500             : 
     501             : static GEN
     502         112 : _lerchphi(GEN z, GEN s, GEN a, long prec)
     503             : {
     504         112 :   GEN res = NULL, L, LT, J, rs, mleft, left, right, top, w, Linf, tabg;
     505             :   GEN E, f, fm;
     506         112 :   long B = prec2nbits(prec), MB = 3 - B, NB, prec2;
     507             :   entree *ep;
     508             : 
     509         112 :   if (gexpo(z) < MB) return gpow(a, gneg(s), prec);
     510         112 :   if (gexpo(gsubgs(z, 1)) < MB) return zetahurwitz(s, a, 0, B); /* z ~ 1 */
     511         112 :   if (gexpo(gaddgs(z, 1)) < MB) /* z ~ -1 */
     512             :   {
     513           7 :     GEN tmp = gsub(zetahurwitz(s, gmul2n(a, -1), 0, B),
     514             :                    zetahurwitz(s, gmul2n(gaddgs(a, 1), -1), 0, B));
     515           7 :     return gmul(gpow(gen_2, gneg(s), prec), tmp);
     516             :   }
     517         105 :   if (gcmpgs(gmulsg(10, gabs(z, prec)), 9) <= 0) /* |z| <= 9/10 */
     518          14 :     return lerch_easy(z, s, a, B);
     519          91 :   if (gcmpgs(real_i(a), 2) < 0)
     520          49 :     return gadd(gpow(a, gneg(s), prec),
     521             :                 gmul(z, _lerchphi(z, s, gaddgs(a, 1), prec)));
     522          42 :   NB = (long)ceil(B + M_PI * fabs(gtodouble(imag_i(s))));
     523          42 :   prec2 = nbits2prec(NB);
     524          42 :   z = gprec_w(z, prec2); /* |z| > 9/10 */
     525          42 :   s = gprec_w(s, prec2);
     526          42 :   a = gprec_w(a, prec2); /* Re(a) >= 2 */
     527          42 :   rs = ground(real_i(s)); L = glog(z, prec2); /* Re(L) > -0.11 */
     528          42 :   ep = is_entry("_lerch_worker");
     529          42 :   E = mkvec4(gsubgs(s, 1), gsubsg(1, a), gneg(z), stoi(prec2));
     530          42 :   f = snm_closure(ep, mkvec(E));
     531          42 :   E = shallowcopy(E); gel(E,4) = stoi(-prec2);
     532          42 :   fm = snm_closure(ep, mkvec(E));
     533          42 :   Linf = mkvec2(mkoo(), real_i(a));
     534          42 :   if (gexpo(gsub(s, rs)) < MB && gcmpgs(rs, 1) >= 0)
     535             :   { /* s ~ positive integer */
     536          14 :     if (gcmp(gabs(imag_i(L), prec2), sstoQ(1, 4)) < 0 && gsigne(real_i(L)) >= 0)
     537           7 :     { /* Re(L) >= 0, |Im(L)| < 1/4 */
     538           7 :       GEN t = gsigne(imag_i(z)) > 0 ? gen_m1: gen_1;
     539           7 :       GEN LT1 = gaddgs(gabs(L, prec2), 1);
     540           7 :       LT = mkvec4(gen_0, mkcomplex(gen_0, t), mkcomplex(LT1, t), LT1);
     541           7 :       tabg = intnumgaussinit(2*(NB >> 2) + 60, prec2);
     542           7 :       J = parintnumgaussadapt(f, LT, tabg, NB);
     543           7 :       J = gadd(J, parintnumadapt(f, LT1, Linf, NULL, NB));
     544             :     }
     545           7 :     else J = parintnumadapt(f, gen_0, Linf, NULL, NB);
     546          14 :     return gdiv(J, ggamma(s, prec2));
     547             :   }
     548          28 :   tabg = intnumgaussinit(2*(NB >> 2) + 60, prec2);
     549          28 :   if (gcmp(gabs(imag_i(L), prec2), ghalf) > 0) /* |Im(L)| > 1/2 */
     550          14 :     left = right = top = gmin(gmul2n(gabs(imag_i(L), prec2), -1), gen_1);
     551             :   else
     552             :   {
     553          14 :     res = gdiv(gpow(gneg(L), s, prec2), gmul(L, gpow(z, a, prec2)));
     554          14 :     left = gaddgs(gmax(gen_0, gneg(real_i(L))), 1);
     555          14 :     top = gaddgs(gabs(imag_i(L), prec2), 1);
     556          14 :     right = gaddgs(gabs(L, prec2), 1);
     557             :   }
     558          28 :   w = expIPiC(gsubgs(s, 1), prec2);
     559          28 :   mleft = gneg(left);
     560          28 :   if (gexpo(imag_i(z)) < MB && gexpo(imag_i(a)) < MB && gexpo(imag_i(s)) < MB
     561           7 :       && gcmpgs(real_i(z), 1) < 0)
     562             :   { /* (z, s, a) real, z < 1 */
     563           7 :     LT = mkvec3(right, mkcomplex(right, top), mkcomplex(mleft, top));
     564           7 :     J = imag_i(gdiv(parintnumgaussadapt(f, LT, tabg, NB), w));
     565           7 :     LT = mkvec2(mkcomplex(mleft, top), mleft);
     566           7 :     J = gmul2n(gadd(J, imag_i(parintnumgaussadapt(fm, LT, tabg, NB))), 1);
     567           7 :     J = mulcxI(J);
     568             :   }
     569             :   else
     570             :   {
     571          21 :     GEN mtop = gneg(top);
     572          21 :     LT = mkvec3(right, mkcomplex(right, top), mkcomplex(mleft, top));
     573          21 :     J = gdiv(parintnumgaussadapt(f, LT, tabg, NB), w);
     574          21 :     LT = mkvec2(mkcomplex(mleft, top), mkcomplex(mleft, mtop));
     575          21 :     J = gadd(J, parintnumgaussadapt(fm, LT, tabg, NB));
     576          21 :     LT = mkvec3(mkcomplex(mleft, mtop), mkcomplex(right, mtop), right);
     577          21 :     J = gadd(J, gmul(parintnumgaussadapt(f, LT, tabg, NB), w));
     578             :   }
     579          28 :   J = gadd(J, gmul(gsub(w, ginv(w)), parintnumadapt(f, right, Linf, NULL, NB)));
     580          28 :   J = gdiv(J, PiI2(prec2)); if (res) J = gadd(J, res);
     581          28 :   return gneg(gmul(ggamma(gsubsg(1, s), prec2), J));
     582             : }
     583             : /* lerchphi(z,-k,a)=
     584             :  *  -1/(z-1)*sum(q=0,k,(z/(z-1))^q*sum(j=0,q,(-1)^j*(j+a)^k*binomial(q,j)))
     585             :  * zetahurwitz(-k,a)=-B(k+1,a)/(k+1) */
     586             : GEN
     587          56 : lerchphi(GEN z, GEN s, GEN a, long prec)
     588             : {
     589          56 :   pari_sp av = avma;
     590          56 :   if (!iscplx(z)) pari_err_TYPE("lerchphi", z);
     591          56 :   if (!iscplx(s)) pari_err_TYPE("lerchphi", s);
     592          56 :   if (!iscplx(a)) pari_err_TYPE("lerchphi", a);
     593          56 :   return gerepileupto(av, _lerchphi(z, s, a, prec));
     594             : }
     595             : 
     596             : GEN
     597          14 : lerchzeta(GEN s, GEN a, GEN lam, long prec)
     598             : {
     599          14 :   pari_sp av = avma;
     600          14 :   GEN z = gexp(gmul(PiI2(prec), lam), prec);
     601          14 :   if (!iscplx(z)) pari_err_TYPE("lerchzeta", z);
     602          14 :   if (!iscplx(s)) pari_err_TYPE("lerchzeta", s);
     603          14 :   if (!iscplx(a)) pari_err_TYPE("lerchzeta", a);
     604          14 :   if (hurwitz_cutoff(s, prec)) return lerchzetalarge(s, a, lam, prec);
     605           7 :   return gerepileupto(av, _lerchphi(z, s, a, prec));
     606             : }

Generated by: LCOV version 1.16