Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - kernel/none - halfgcd.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.0 lcov report (development 29818-b3e15d99d2) Lines: 215 219 98.2 %
Date: 2024-12-27 09:09:37 Functions: 20 20 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : #line 2 "../src/kernel/none/halfgcd.c"
       2             : /* Copyright (C) 2019  The PARI group.
       3             : 
       4             : This file is part of the PARI/GP package.
       5             : 
       6             : PARI/GP is free software; you can redistribute it and/or modify it under the
       7             : terms of the GNU General Public License as published by the Free Software
       8             : Foundation; either version 2 of the License, or (at your option) any later
       9             : version. It is distributed in the hope that it will be useful, but WITHOUT
      10             : ANY WARRANTY WHATSOEVER.
      11             : 
      12             : Check the License for details. You should have received a copy of it, along
      13             : with the package; see the file 'COPYING'. If not, write to the Free Software
      14             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      15             : 
      16             : GEN
      17        2338 : ZM2_sqr(GEN A)
      18             : {
      19        2338 :   GEN a = gcoeff(A,1,1), b = gcoeff(A,1,2), a2 = sqri(a);
      20        2338 :   GEN c = gcoeff(A,2,1), d = gcoeff(A,2,2), d2 = sqri(d), t = addii(a,d);
      21        2338 :   if (equalii(b, c)) /* symetric, 3S + 1M */
      22             :   {
      23         322 :     GEN b2 = sqri(b), M = cgetg(3, t_MAT), tb = mulii(b, t);
      24         322 :     gel(M,1) = mkcol2(addii(a2, b2), tb);
      25         322 :     gel(M,2) = mkcol2(tb, addii(b2, d2)); return M;
      26             :   }
      27             :   else
      28             :   { /* general, 2S + 3M */
      29        2016 :     GEN bc = mulii(b, c);
      30        2016 :     retmkmat2(mkcol2(addii(bc, a2), mulii(c, t)),
      31             :               mkcol2(mulii(b, t), addii(bc, d2)));
      32             :   }
      33             : }
      34             : 
      35             : GEN
      36     7276473 : ZM2_mul(GEN A, GEN B)
      37             : {
      38     7276473 :   const long t = ZM2_MUL_LIMIT+2;
      39     7276473 :   GEN A11=gcoeff(A,1,1),A12=gcoeff(A,1,2), B11=gcoeff(B,1,1),B12=gcoeff(B,1,2);
      40     7276473 :   GEN A21=gcoeff(A,2,1),A22=gcoeff(A,2,2), B21=gcoeff(B,2,1),B22=gcoeff(B,2,2);
      41     7276473 :   if (lgefint(A11) < t || lgefint(B11) < t || lgefint(A22) < t || lgefint(B22) < t
      42      120959 :    || lgefint(A12) < t || lgefint(B12) < t || lgefint(A21) < t || lgefint(B21) < t)
      43             :   { /* 8M */
      44     7158178 :     GEN a = mulii(A11, B11), b = mulii(A12, B21);
      45     7157471 :     GEN c = mulii(A11, B12), d = mulii(A12, B22);
      46     7157525 :     GEN e = mulii(A21, B11), f = mulii(A22, B21);
      47     7157498 :     GEN g = mulii(A21, B12), h = mulii(A22, B22);
      48     7157459 :     retmkmat2(mkcol2(addii(a,b), addii(e,f)), mkcol2(addii(c,d), addii(g,h)));
      49             :   } else
      50             :   { /* Strassen: 7M */
      51      118295 :     GEN M1 = mulii(addii(A11,A22), addii(B11,B22));
      52      118294 :     GEN M2 = mulii(addii(A21,A22), B11);
      53      118295 :     GEN M3 = mulii(A11, subii(B12,B22));
      54      118295 :     GEN M4 = mulii(A22, subii(B21,B11));
      55      118294 :     GEN M5 = mulii(addii(A11,A12), B22);
      56      118295 :     GEN M6 = mulii(subii(A21,A11), addii(B11,B12));
      57      118294 :     GEN M7 = mulii(subii(A12,A22), addii(B21,B22));
      58      118294 :     GEN T1 = addii(M1,M4), T2 = subii(M7,M5);
      59      118295 :     GEN T3 = subii(M1,M2), T4 = addii(M3,M6);
      60      118295 :     retmkmat2(mkcol2(addii(T1,T2), addii(M2,M4)),
      61             :               mkcol2(addii(M3,M5), addii(T3,T4)));
      62             :   }
      63             : }
      64             : 
      65             : static GEN
      66         666 : matid2(void)
      67             : {
      68         666 :     retmkmat2(mkcol2(gen_1,gen_0),
      69             :               mkcol2(gen_0,gen_1));
      70             : }
      71             : 
      72             : /* Return M*[q,1;1,0] */
      73             : static GEN
      74     2995835 : mulq(GEN M, GEN q)
      75             : {
      76     2995835 :   GEN u, v, res = cgetg(3, t_MAT);
      77     2995792 :   u = addii(mulii(gcoeff(M,1,1), q), gcoeff(M,1,2));
      78     2995864 :   v = addii(mulii(gcoeff(M,2,1), q), gcoeff(M,2,2));
      79     2995858 :   gel(res,1) = mkcol2(u, v);
      80     2995836 :   gel(res,2) = gel(M,1);
      81     2995836 :   return res;
      82             : }
      83             : static GEN
      84          59 : mulqab(GEN M, GEN q, GEN *ap, GEN *bp)
      85             : {
      86          59 :   GEN b = subii(*ap, mulii(*bp, q));
      87          59 :   *ap = *bp; *bp = b;
      88          59 :   return mulq(M,q);
      89             : }
      90             : 
      91             : /* Return M*[q,1;1,0]^-1 */
      92             : 
      93             : static GEN
      94        1168 : mulqi(GEN M, GEN q, GEN *ap, GEN *bp)
      95             : {
      96             :   GEN u, v, res, a;
      97        1168 :   a = addii(mulii(*ap, q), *bp);
      98        1168 :   *bp = *ap; *ap = a;
      99        1168 :   res = cgetg(3, t_MAT);
     100        1168 :   u = subii(gcoeff(M,1,1),mulii(gcoeff(M,1,2), q));
     101        1168 :   v = subii(gcoeff(M,2,1),mulii(gcoeff(M,2,2), q));
     102        1168 :   gel(res,1) = gel(M,2);
     103        1168 :   gel(res,2) = mkcol2(u,v);
     104        1168 :   return res;
     105             : }
     106             : 
     107             : /* test whether n is a power of 2 */
     108             : static long
     109    22965591 : isint2n(GEN n)
     110             : {
     111             :   GEN x;
     112    22965591 :   long lx = lgefint(n), i;
     113    22965591 :   if (lx == 2) return 0;
     114    22965591 :   x = int_MSW(n);
     115    22965591 :   if (*(ulong*)x != 1UL<<expu(*(ulong*)x) ) return 0;
     116      522349 :   for (i = 3; i < lx; i++)
     117             :   {
     118      514971 :     x = int_precW(x); if (*x) return 0;
     119             :   }
     120        7378 :   return 1;
     121             : }
     122             : 
     123             : static long
     124    22965845 : uexpi(GEN a)
     125    22965845 : { return expi(a)+!isint2n(a); }
     126             : 
     127             : static GEN
     128      107807 : FIXUP0(GEN M, GEN *a, GEN *b, long m)
     129             : {
     130      107807 :   long cnt=0;
     131      137223 :   while (expi(*b) >= m)
     132             :   {
     133       29416 :     GEN r, q = dvmdii(*a, *b, &r);
     134       29416 :     *a = *b; *b = r;
     135       29416 :     M = mulq(M, q);
     136       29416 :     cnt++;
     137             :   };
     138      107807 :   if (cnt>6) pari_err_BUG("FIXUP0");
     139      107808 :   return M;
     140             : }
     141             : 
     142             : static long
     143     6453521 : signdet(GEN Q)
     144             : {
     145     6453521 :   long a = Mod4(gcoeff(Q,1,1)), b = Mod4(gcoeff(Q,1,2));
     146     6453576 :   long c = Mod4(gcoeff(Q,2,1)), d = Mod4(gcoeff(Q,2,2));
     147     6455011 :   return ((a*d-b*c)&3)==1 ? 1 : -1;
     148             : }
     149             : 
     150             : static GEN
     151     6288121 : ZM_inv2(GEN M)
     152             : {
     153     6288121 :   long e = signdet(M);
     154     9952069 :   if (e==1) return mkmat22(gcoeff(M,2,2),negi(gcoeff(M,1,2)),
     155     3662886 :                           negi(gcoeff(M,2,1)),gcoeff(M,1,1));
     156     2626422 :   else      return mkmat22(negi(gcoeff(M,2,2)),gcoeff(M,1,2),
     157     2626435 :                            gcoeff(M,2,1),negi(gcoeff(M,1,1)));
     158             : }
     159             : 
     160             : static GEN
     161        1168 : lastq(GEN Q)
     162             : {
     163        1168 :   GEN p = gcoeff(Q,1,1), q = gcoeff(Q,1,2), s = gcoeff(Q,2,2);
     164        1168 :   if (signe(q)==0) pari_err_BUG("halfgcd");
     165        1168 :   if (signe(s)==0) return p;
     166        1168 :   if (equali1(q))  return subiu(p,1);
     167        1168 :   return divii(p, q);
     168             : }
     169             : 
     170             : static GEN
     171        6853 : mulT(GEN Q, GEN *ap, GEN *bp)
     172             : {
     173        6853 :   *ap = addii(*ap, *bp);
     174        6853 :   *bp = negi(*bp);
     175        6853 :   return mkmat2(gel(Q,1),
     176        6853 :            mkcol2(subii(gcoeff(Q,1,1), gcoeff(Q,1,2))
     177        6853 :                 , subii(gcoeff(Q,2,1), gcoeff(Q,2,2))));
     178             : }
     179             : 
     180             : static GEN
     181      165656 : FIXUP1(GEN M, GEN a, GEN b, long m, long t, GEN *ap, GEN *bp)
     182             : {
     183      165656 :   GEN Q = gel(M,1), a0 = gel(M,2), b0 = gel(M,3);
     184      165656 :   GEN q, am = remi2n(a, m), bm = remi2n(b, m);
     185      165690 :   if (signdet(Q)==-1)
     186             :   {
     187      111010 :     *ap = subii(mulii(bm, gcoeff(Q,1,2)),mulii(am, gcoeff(Q,2,2)));
     188      111045 :     *bp = subii(mulii(am, gcoeff(Q,2,1)),mulii(bm, gcoeff(Q,1,1)));
     189      111228 :     *ap = addii(*ap, shifti(addii(a0, gcoeff(Q,2,2)), m));
     190      111167 :     *bp = addii(*bp, shifti(subii(b0, gcoeff(Q,2,1)), m));
     191      110794 :     if (signe(*bp) >= 0)
     192      103870 :       return Q;
     193        6924 :     if (expi(addii(*ap,*bp)) >= m+t)
     194        6853 :       return mulT(Q, ap ,bp);
     195          71 :     q = lastq(Q);
     196          71 :     Q = mulqi(Q, q, ap, bp);
     197          71 :     if (cmpiu(q, 2)>=0)
     198          59 :       return mulqab(Q, subiu(q,1), ap, bp);
     199             :     else
     200          12 :       return mulqi(Q, lastq(Q), ap, bp);
     201             :   }
     202             :   else
     203             :   {
     204       54526 :     *ap = subii(mulii(am, gcoeff(Q,2,2)),mulii(bm, gcoeff(Q,1,2)));
     205       54526 :     *bp = subii(mulii(bm, gcoeff(Q,1,1)),mulii(am, gcoeff(Q,2,1)));
     206       54526 :     *ap = addii(*ap, shifti(subii(a0, gcoeff(Q,2,2)), m));
     207       54526 :     *bp = addii(*bp, shifti(addii(b0, gcoeff(Q,2,1)), m));
     208       54526 :     if (expi(*ap) >= m+t)
     209       53441 :       return FIXUP0(Q, ap, bp, m+t);
     210             :     else
     211        1085 :       return signe(gcoeff(Q,1,2))==0? Q: mulqi(Q, lastq(Q), ap, bp);
     212             :   }
     213             : }
     214             : 
     215             : static long
     216    22911530 : magic_threshold(GEN a)
     217    22911530 : { return (3+uexpi(a))>>1; }
     218             : 
     219             : static GEN
     220    14942621 : HGCD_basecase(GEN y, GEN x)
     221             : {
     222    14942621 :   pari_sp av = avma;
     223             :   GEN d, d1, q, r;
     224             :   GEN u, u1, v, v1;
     225             :   ulong xu, xu1, xv, xv1; /* Lehmer stage recurrence matrix */
     226             :   int lhmres;             /* Lehmer stage return value */
     227             : 
     228    14942621 :   long m = magic_threshold(y);
     229             : 
     230             :   /* There is no special case for single-word numbers since this is
     231             :    * mainly meant to be used with large moduli. */
     232    14942560 :   if (cmpii(y,x) <= 0)
     233             :   {
     234       94143 :     d = x; d1 = y;
     235       94143 :     u = gen_1; u1 = gen_0;
     236       94143 :     v = gen_0; v1 = gen_1;
     237             :   } else
     238             :   {
     239    14848390 :     d = y; d1 = x;
     240    14848390 :     u = gen_0; u1 = gen_1;
     241    14848390 :     v = gen_1; v1 = gen_0;
     242             :   }
     243    33354998 :   while (lgefint(d) > 3 &&  expi(d1) >= m + BITS_IN_LONG + 1)
     244             :   {
     245             :     /* do a Lehmer-Jebelean round */
     246    18748976 :     lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, 0);
     247             : 
     248    18755109 :     if (lhmres)
     249             :     {
     250    17751701 :       if (lhmres == 1 || lhmres == -1)
     251             :       {
     252      459521 :         if (xv1 == 1)
     253             :         {
     254      393794 :           r = subii(d,d1); d = d1; d1 = r;
     255      393788 :           r = addii(u,u1); u = u1; u1 = r;
     256      393715 :           r = addii(v,v1); v = v1; v1 = r;
     257             :         }
     258             :         else
     259             :         {
     260       65727 :           r = subii(d, mului(xv1,d1)); d = d1; d1 = r;
     261       65726 :           r = addii(u, mului(xv1,u1)); u = u1; u1 = r;
     262       65726 :           r = addii(v, mului(xv1,v1)); v = v1; v1 = r;
     263             :         }
     264             :       }
     265             :       else
     266             :       {
     267    17292180 :         r  = subii(muliu(d,xu),  muliu(d1,xv));
     268    17287450 :         d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
     269    17287417 :         r  = addii(muliu(u,xu),  muliu(u1,xv));
     270    17286100 :         u1 = addii(muliu(u,xu1), muliu(u1,xv1)); u = r;
     271    17285917 :         r  = addii(muliu(v,xu),  muliu(v1,xv));
     272    17286002 :         v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r;
     273    17288915 :         if (lhmres&1) togglesign(d); else togglesign(d1);
     274             :       }
     275             :     } /* lhmres != 0 */
     276    18751598 :     if (expi(d1) < m) break;
     277             : 
     278    18412697 :     if (lhmres <= 0 && signe(d1))
     279             :     {
     280     1056163 :       q = dvmdii(d,d1,&r);
     281     1056117 :       d = d1; d1 = r;
     282     1056117 :       r = addii(u, mulii(q,u1)); u = u1; u1 = r;
     283     1055783 :       r = addii(v, mulii(q,v1)); v = v1; v1 = r;
     284             :     }
     285    18412267 :     if (gc_needed(av,1))
     286             :     {
     287           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"ratlift");
     288           0 :       gerepileall(av, 6, &d, &d1, &u, &u1, &v, &v1);
     289             :     }
     290             :   }
     291    82833898 :   while (expi(d1) >= m)
     292             :   {
     293    67890437 :     GEN r, q = dvmdii(d,d1, &r);
     294    67895683 :     d = d1; d1 = r; swap(u,u1); swap(v,v1);
     295    67895683 :     u1 = addii(mulii(u, q), u1);
     296    67891313 :     v1 = addii(mulii(v, q), v1);
     297             :   }
     298    14934246 :   return gerepilecopy(av, mkvec3(mkmat22(u1,u,v1,v), d, d1));
     299             : }
     300             : 
     301             : static GEN HGCD(GEN x, GEN y);
     302             : 
     303             : /*
     304             : Based on
     305             : Klaus Thull and Chee K. Yap,
     306             : A unified approach to HGCD algorithms for polynomials andintegers,
     307             : 1990, Manuscript.
     308             : URL: http://cs.nyu.edu/cs/faculty/yap/papers.
     309             : */
     310             : 
     311             : static GEN
     312      111648 : HGCD_split(GEN a, GEN b)
     313             : {
     314      111648 :   pari_sp av = avma;
     315      111648 :   long m = magic_threshold(a), t, l, k, tp;
     316             :   GEN a0, b0, ap, bp, c, d, c0, d0, cp, dp, R, S, T, q, r;
     317      111560 :   if (signe(b) < 0  || cmpii(a,b)<0) pari_err_BUG("HGCD_split");
     318      111594 :   if (expi(b) < m)
     319         444 :     return gerepilecopy(av, mkvec3(matid2(), a, b));
     320      111097 :   a0 = addiu(shifti(a, -m), 1);
     321      111170 :   if (cmpiu(a0,7) <= 0)
     322             :   {
     323           0 :     R = FIXUP0(matid2(), &a, &b, m);
     324           0 :     return gerepilecopy(av, mkvec3(R, a, b));
     325             :   }
     326      111144 :   b0 = shifti(b,-m);
     327      111387 :   t = magic_threshold(a0);
     328      111170 :   R = FIXUP1(HGCD(a0,b0),a, b, m, t, &ap, &bp);
     329      110962 :   if (expi(bp) < m)
     330       56509 :     return gerepilecopy(av, mkvec3(R, ap, bp));
     331       54367 :   q = dvmdii(ap, bp, &r);
     332       54367 :   c = bp; d = r;
     333       54367 :   if (cmpiu(shifti(c,-m),6) <= 0)
     334             :   {
     335          21 :     R = FIXUP0(mulq(R, q), &c, &d, m);
     336          21 :     return gerepilecopy(av, mkvec3(R, c, d));
     337             :   }
     338       54346 :   l = uexpi(c);
     339       54346 :   k = 2*m-l-1; if (k<0) pari_err_BUG("halfgcd");
     340       54346 :   c0 = addiu(shifti(c, -k), 1); if (cmpiu(c0,8)<0) pari_err_BUG("halfgcd");
     341       54346 :   d0 = shifti(d, -k);
     342       54346 :   tp = magic_threshold(c0);
     343       54346 :   S = FIXUP1(HGCD(c0,d0), c, d, k, tp, &cp, &dp);
     344       54346 :   if (!(expi(cp)>=m+1 && m+1 > expi(dp))) pari_err_BUG("halfgcd");
     345       54346 :   T = FIXUP0(ZM2_mul(mulq(R, q), S), &cp, &dp, m);
     346       54346 :   return gerepilecopy(av, mkvec3(T, cp, dp));
     347             : }
     348             : 
     349             : static GEN
     350    15054107 : HGCD(GEN x, GEN y)
     351             : {
     352    15054107 :   if (lgefint(y)-2 < HALFGCD_LIMIT)
     353    14942582 :     return HGCD_basecase(x, y);
     354             :   else
     355      111525 :     return HGCD_split(x, y);
     356             : }
     357             : 
     358             : static GEN
     359    29250032 : HGCD0(GEN x, GEN y)
     360             : {
     361    29250032 :   if (signe(y) >= 0 && cmpii(x, y) >= 0)
     362    14884814 :     return HGCD(x, y);
     363    14365227 :   if (cmpii(x, y) < 0)
     364             :   {
     365    11976048 :     GEN M = HGCD0(y, x), Q = gel(M,1);
     366    11974441 :     return mkvec3(mkmat22(gcoeff(Q,2,1),gcoeff(Q,2,2),gcoeff(Q,1,1),gcoeff(Q,1,2)),
     367    11976308 :         gel(M,2),gel(M,3));
     368             :   } /* Now y <= x*/
     369     2389394 :   if (signe(x) <= 0)
     370             :   { /* y <= x <=0 */
     371        3856 :     GEN M = HGCD(negi(y), negi(x)), Q = gel(M,1);
     372        3856 :     return mkvec3(mkmat22(negi(gcoeff(Q,2,1)),negi(gcoeff(Q,2,2)),
     373        3856 :                           negi(gcoeff(Q,1,1)),negi(gcoeff(Q,1,2))),
     374        3856 :         gel(M,2),gel(M,3));
     375             :   }
     376             :   else /* y <= 0 <=x */
     377             :   {
     378     2385538 :     GEN M = HGCD0(x, negi(y)), Q = gel(M,1);
     379     2385538 :     return mkvec3(mkmat22(gcoeff(Q,1,1),gcoeff(Q,1,2),negi(gcoeff(Q,2,1)),negi(gcoeff(Q,2,2))),
     380     2385538 :         gel(M,2),gel(M,3));
     381             :   }
     382             : }
     383             : 
     384             : GEN
     385     6288938 : halfgcdii(GEN A, GEN B)
     386             : {
     387     6288938 :   pari_sp av = avma;
     388     6288938 :   GEN M, Q, a, b, m = abscmpii(A, B)>0 ? A: B;
     389     6288954 :   M = HGCD0(A,B); Q = gel(M,1); a = gel(M,2); b = gel(M,3);
     390     9199037 :   while (signe(b) && abscmpii(sqri(b), m) >= 0)
     391             :   {
     392     2911879 :     GEN r, q = dvmdii(a, b, &r);
     393     2911841 :     a = b; b = r;
     394     2911841 :     Q = mulq(Q, q);
     395             :   }
     396     6287790 :   return gerepilecopy(av, mkvec2(ZM_inv2(Q),mkcol2(a,b)));
     397             : }

Generated by: LCOV version 1.16