Line data Source code
1 : /* Copyright (C) 2016 The PARI group.
2 :
3 : This file is part of the PARI/GP package.
4 :
5 : PARI/GP is free software; you can redistribute it and/or modify it under the
6 : terms of the GNU General Public License as published by the Free Software
7 : Foundation; either version 2 of the License, or (at your option) any later
8 : version. It is distributed in the hope that it will be useful, but WITHOUT
9 : ANY WARRANTY WHATSOEVER.
10 :
11 : Check the License for details. You should have received a copy of it, along
12 : with the package; see the file 'COPYING'. If not, write to the Free Software
13 : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
14 :
15 : #include "pari.h"
16 : #include "paripriv.h"
17 :
18 : /**********************************************************************/
19 : /*** ***/
20 : /*** Public prime table ***/
21 : /*** ***/
22 : /**********************************************************************/
23 :
24 : static ulong _maxprimelim = 0;
25 : static GEN _prodprimes,_prodprimes_addr;
26 : typedef unsigned char *byteptr;
27 :
28 : /* Build/Rebuild table of prime differences. The actual work is done by the
29 : * following two subroutines; the user entry point is the function
30 : * initprimes() below; initprimes1() is the basecase, called when
31 : * maxnum (size) is moderate. Must be called after pari_init_stack() )*/
32 : static void
33 1862 : initprimes1(ulong size, long *lenp, pari_prime *p1)
34 : {
35 1862 : pari_sp av = avma;
36 : long k;
37 1862 : byteptr q, r, s, p = (byteptr)stack_calloc(size+2), fin = p + size;
38 : pari_prime *re;
39 :
40 22344 : for (r=q=p,k=1; r<=fin; )
41 : {
42 33516 : do { r+=k; k+=2; r+=k; } while (*++q);
43 899346 : for (s=r; s<=fin; s+=k) *s = 1;
44 : }
45 1862 : re = p1; *re++ = 2; *re++ = 3; /* 2 and 3 */
46 1862 : for (s=q=p+1; ; s=q)
47 : {
48 951482 : do q++; while (*q);
49 318402 : if (q > fin) break;
50 316540 : *re++ = (pari_prime) 2*(q-p)+1;
51 : }
52 1862 : *re++ = 0;
53 1862 : *lenp = re - p1;
54 1862 : set_avma(av);
55 1862 : }
56 :
57 : /* Timing in ms (Athlon/850; reports 512K of secondary cache; looks
58 : like there is 64K of quickier cache too).
59 :
60 : arena| 30m 100m 300m 1000m 2000m <-- primelimit
61 : =================================================
62 : 16K 1.1053 1.1407 1.2589 1.4368 1.6086
63 : 24K 1.0000 1.0625 1.1320 1.2443 1.3095
64 : 32K 1.0000 1.0469 1.0761 1.1336 1.1776
65 : 48K 1.0000 1.0000 1.0254 1.0445 1.0546
66 : 50K 1.0000 1.0000 1.0152 1.0345 1.0464
67 : 52K 1.0000 1.0000 1.0203 1.0273 1.0362
68 : 54K 1.0000 1.0000 1.0812 1.0216 1.0281
69 : 56K 1.0526 1.0000 1.0051 1.0144 1.0205
70 : 58K 1.0000 1.0000 1.0000 1.0086 1.0123
71 : 60K 0.9473 0.9844 1.0051 1.0014 1.0055
72 : 62K 1.0000 0.9844 0.9949 0.9971 0.9993
73 : 64K 1.0000 1.0000 1.0000 1.0000 1.0000
74 : 66K 1.2632 1.2187 1.2183 1.2055 1.1953
75 : 68K 1.4211 1.4844 1.4721 1.4425 1.4188
76 : 70K 1.7368 1.7188 1.7107 1.6767 1.6421
77 : 72K 1.9474 1.9531 1.9594 1.9023 1.8573
78 : 74K 2.2105 2.1875 2.1827 2.1207 2.0650
79 : 76K 2.4211 2.4219 2.4010 2.3305 2.2644
80 : 78K 2.5789 2.6250 2.6091 2.5330 2.4571
81 : 80K 2.8421 2.8125 2.8223 2.7213 2.6380
82 : 84K 3.1053 3.1875 3.1776 3.0819 2.9802
83 : 88K 3.5263 3.5312 3.5228 3.4124 3.2992
84 : 92K 3.7895 3.8438 3.8375 3.7213 3.5971
85 : 96K 4.0000 4.1093 4.1218 3.9986 3.9659
86 : 112K 4.3684 4.5781 4.5787 4.4583 4.6115
87 : 128K 4.7368 4.8750 4.9188 4.8075 4.8997
88 : 192K 5.5263 5.7188 5.8020 5.6911 5.7064
89 : 256K 6.0000 6.2187 6.3045 6.1954 6.1033
90 : 384K 6.7368 6.9531 7.0405 6.9181 6.7912
91 : 512K 7.3158 7.5156 7.6294 7.5000 7.4654
92 : 768K 9.1579 9.4531 9.6395 9.5014 9.1075
93 : 1024K 10.368 10.7497 10.9999 10.878 10.8201
94 : 1536K 12.579 13.3124 13.7660 13.747 13.4739
95 : 2048K 13.737 14.4839 15.0509 15.151 15.1282
96 : 3076K 14.789 15.5780 16.2993 16.513 16.3365
97 :
98 : Now the same number relative to the model
99 :
100 : (1 + 0.36*sqrt(primelimit)/arena) * (arena <= 64 ? 1.05 : (arena-64)**0.38)
101 :
102 : [SLOW2_IN_ROOTS = 0.36, ALPHA = 0.38]
103 :
104 : arena| 30m 100m 300m 1000m 2000m <-- primelimit
105 : =================================================
106 : 16K 1.014 0.9835 0.9942 0.9889 1.004
107 : 24K 0.9526 0.9758 0.9861 0.9942 0.981
108 : 32K 0.971 0.9939 0.9884 0.9849 0.9806
109 : 48K 0.9902 0.9825 0.996 0.9945 0.9885
110 : 50K 0.9917 0.9853 0.9906 0.9926 0.9907
111 : 52K 0.9932 0.9878 0.9999 0.9928 0.9903
112 : 54K 0.9945 0.9902 1.064 0.9939 0.9913
113 : 56K 1.048 0.9924 0.9925 0.993 0.9921
114 : 58K 0.9969 0.9945 0.9909 0.9932 0.9918
115 : 60K 0.9455 0.9809 0.9992 0.9915 0.9923
116 : 62K 0.9991 0.9827 0.9921 0.9924 0.9929
117 : 64K 1 1 1 1 1
118 : 66K 1.02 0.9849 0.9857 0.9772 0.9704
119 : 68K 0.8827 0.9232 0.9176 0.9025 0.8903
120 : 70K 0.9255 0.9177 0.9162 0.9029 0.8881
121 : 72K 0.9309 0.936 0.9429 0.9219 0.9052
122 : 74K 0.9715 0.9644 0.967 0.9477 0.9292
123 : 76K 0.9935 0.9975 0.9946 0.9751 0.9552
124 : 78K 0.9987 1.021 1.021 1.003 0.9819
125 : 80K 1.047 1.041 1.052 1.027 1.006
126 : 84K 1.052 1.086 1.092 1.075 1.053
127 : 88K 1.116 1.125 1.133 1.117 1.096
128 : 92K 1.132 1.156 1.167 1.155 1.134
129 : 96K 1.137 1.177 1.195 1.185 1.196
130 : 112K 1.067 1.13 1.148 1.15 1.217
131 : 128K 1.04 1.083 1.113 1.124 1.178
132 : 192K 0.9368 0.985 1.025 1.051 1.095
133 : 256K 0.8741 0.9224 0.9619 0.995 1.024
134 : 384K 0.8103 0.8533 0.8917 0.9282 0.9568
135 : 512K 0.7753 0.8135 0.8537 0.892 0.935
136 : 768K 0.8184 0.8638 0.9121 0.9586 0.9705
137 : 1024K 0.8241 0.8741 0.927 0.979 1.03
138 : 1536K 0.8505 0.9212 0.9882 1.056 1.096
139 : 2048K 0.8294 0.8954 0.9655 1.041 1.102
140 :
141 : */
142 :
143 : #ifndef SLOW2_IN_ROOTS
144 : /* SLOW2_IN_ROOTS below 3: some slowdown starts to be noticable
145 : * when things fit into the cache on Sparc.
146 : * The choice of 2.6 gives a slowdown of 1-2% on UltraSparcII,
147 : * but makes calculations for "maximum" of 436273009
148 : * fit into 256K cache (still common for some architectures).
149 : *
150 : * One may change it when small caches become uncommon, but the gain
151 : * is not going to be very noticable... */
152 : # ifdef i386 /* gcc defines this? */
153 : # define SLOW2_IN_ROOTS 0.36
154 : # else
155 : # define SLOW2_IN_ROOTS 2.6
156 : # endif
157 : #endif
158 : #ifndef CACHE_ARENA
159 : # ifdef i386 /* gcc defines this? */
160 : /* Due to smaller SLOW2_IN_ROOTS, smaller arena is OK; fit L1 cache */
161 : # define CACHE_ARENA (63 * 1024UL) /* No slowdown even with 64K L1 cache */
162 : # else
163 : # define CACHE_ARENA (200 * 1024UL) /* No slowdown even with 256K L2 cache */
164 : # endif
165 : #endif
166 :
167 : #define CACHE_ALPHA (0.38) /* Cache performance model parameter */
168 : #define CACHE_CUTOFF (0.018) /* Cache performance not smooth here */
169 :
170 : static double slow2_in_roots = SLOW2_IN_ROOTS;
171 :
172 : typedef struct {
173 : ulong arena;
174 : double power;
175 : double cutoff;
176 : ulong bigarena;
177 : } cache_model_t;
178 :
179 : static cache_model_t cache_model = { CACHE_ARENA, CACHE_ALPHA, CACHE_CUTOFF, 0 };
180 :
181 : /* Assume that some calculation requires a chunk of memory to be
182 : accessed often in more or less random fashion (as in sieving).
183 : Assume that the calculation can be done in steps by subdividing the
184 : chunk into smaller subchunks (arenas) and treating them
185 : separately. Assume that the overhead of subdivision is equivalent
186 : to the number of arenas.
187 :
188 : Find an optimal size of the arena taking into account the overhead
189 : of subdivision, and the overhead of arena not fitting into the
190 : cache. Assume that arenas of size slow2_in_roots slows down the
191 : calculation 2x (comparing to very big arenas; when cache hits do
192 : not matter). Since cache performance varies wildly with
193 : architecture, load, and wheather (especially with cache coloring
194 : enabled), use an idealized cache model based on benchmarks above.
195 :
196 : Assume that an independent region of FIXED_TO_CACHE bytes is accessed
197 : very often concurrently with the arena access.
198 : */
199 : static ulong
200 1862 : good_arena_size(ulong slow2_size, ulong total, ulong fixed_to_cache,
201 : cache_model_t *cache_model)
202 : {
203 1862 : ulong asize, cache_arena = cache_model->arena;
204 : double Xmin, Xmax, A, B, C1, C2, D, V;
205 1862 : double alpha = cache_model->power, cut_off = cache_model->cutoff;
206 :
207 : /* Estimated relative slowdown,
208 : with overhead = max((fixed_to_cache+arena)/cache_arena - 1, 0):
209 :
210 : 1 + slow2_size/arena due to initialization overhead;
211 :
212 : max(1, 4.63 * overhead^0.38 ) due to footprint > cache size.
213 :
214 : [The latter is hard to substantiate theoretically, but this
215 : function describes benchmarks pretty close; it does not hurt that
216 : one can minimize it explicitly too ;-). The switch between
217 : different choices of max() happens when overhead=0.018.]
218 :
219 : Thus the problem is minimizing (1 + slow2_size/arena)*overhead**0.29.
220 : This boils down to F=((X+A)/(X+B))X^alpha, X=overhead,
221 : B = (1 - fixed_to_cache/cache_arena), A = B + slow2_size/cache_arena,
222 : alpha = 0.38, and X>=0.018, X>-B.
223 :
224 : We need to find the rightmost root of (X+A)*(X+B) - alpha(A-B)X to the
225 : right of 0.018 (if such exists and is below Xmax). Then we manually
226 : check the remaining region [0, 0.018].
227 :
228 : Since we cannot trust the purely-experimental cache-hit slowdown
229 : function, as a sanity check always prefer fitting into the
230 : cache (or "almost fitting") if F-law predicts that the larger
231 : value of the arena provides less than 10% speedup.
232 : */
233 :
234 : /* The simplest case: we fit into cache */
235 1862 : asize = cache_arena - fixed_to_cache;
236 1862 : if (total <= asize) return total;
237 : /* The simple case: fitting into cache doesn't slow us down more than 10% */
238 1862 : if (asize > 10 * slow2_size) return asize;
239 : /* Slowdown of not fitting into cache is significant. Try to optimize.
240 : Do not be afraid to spend some time on optimization - in trivial
241 : cases we do not reach this point; any gain we get should
242 : compensate the time spent on optimization. */
243 :
244 0 : B = (1 - ((double)fixed_to_cache)/cache_arena);
245 0 : A = B + ((double)slow2_size)/cache_arena;
246 0 : C2 = A*B;
247 0 : C1 = (A + B - 1/alpha*(A - B))/2;
248 0 : D = C1*C1 - C2;
249 0 : if (D > 0)
250 0 : V = cut_off*cut_off + 2*C1*cut_off + C2; /* Value at CUT_OFF */
251 : else
252 0 : V = 0; /* Peacify the warning */
253 0 : Xmin = cut_off;
254 0 : Xmax = ((double)total - fixed_to_cache)/cache_arena; /* Two candidates */
255 :
256 0 : if ( D <= 0 || (V >= 0 && C1 + cut_off >= 0) ) /* slowdown increasing */
257 0 : Xmax = cut_off; /* Only one candidate */
258 0 : else if (V >= 0 && /* slowdown concave down */
259 0 : ((Xmax + C1) <= 0 || (Xmax*Xmax + 2*C1*Xmax + C2) <= 0))
260 : /* DO NOTHING */; /* Keep both candidates */
261 0 : else if (V <= 0 && (Xmax*Xmax + 2*C1*Xmax + C2) <= 0) /*slowdown decreasing*/
262 0 : Xmin = cut_off; /* Only one candidate */
263 : else /* Now we know: 2 roots, the largest is in CUT_OFF..Xmax */
264 0 : Xmax = sqrt(D) - C1;
265 0 : if (Xmax != Xmin) { /* Xmin == CUT_OFF; Check which one is better */
266 0 : double v1 = (cut_off + A)/(cut_off + B);
267 0 : double v2 = 2.33 * (Xmax + A)/(Xmax + B) * pow(Xmax, alpha);
268 :
269 0 : if (1.1 * v2 >= v1) /* Prefer fitting into the cache if slowdown < 10% */
270 0 : V = v1;
271 : else
272 0 : { Xmin = Xmax; V = v2; }
273 0 : } else if (B > 0) /* We need V */
274 0 : V = 2.33 * (Xmin + A)/(Xmin + B) * pow(Xmin, alpha);
275 0 : if (B > 0 && 1.1 * V > A/B) /* Now Xmin is the minumum. Compare with 0 */
276 0 : Xmin = 0;
277 :
278 0 : asize = (ulong)((1 + Xmin)*cache_arena - fixed_to_cache);
279 0 : if (asize > total) asize = total; /* May happen due to approximations */
280 0 : return asize;
281 : }
282 :
283 : /* Use as in
284 : install(set_optimize,lLDG) \\ Through some M too?
285 : set_optimize(2,1) \\ disable dependence on limit
286 : \\ 1: how much cache usable, 2: slowdown of setup, 3: alpha, 4: cutoff,
287 : \\ 5: cache size (typically whole L2 or L3) in bytes to use in forprime()
288 : \\ 2,3,4 are in units of 0.001
289 :
290 : { time_primes_arena(ar,limit) = \\ ar = arena size in K
291 : set_optimize(1,floor(ar*1024));
292 : default(primelimit, 200 000); \\ 100000 results in *larger* malloc()!
293 : gettime;
294 : default(primelimit, floor(limit));
295 : if(ar >= 1, ar=floor(ar));
296 : print("arena "ar"K => "gettime"ms");
297 : }
298 : */
299 : long
300 0 : set_optimize(long what, GEN g)
301 : {
302 0 : long ret = 0;
303 :
304 0 : switch (what) {
305 0 : case 1:
306 0 : ret = (long)cache_model.arena;
307 0 : break;
308 0 : case 2:
309 0 : ret = (long)(slow2_in_roots * 1000);
310 0 : break;
311 0 : case 3:
312 0 : ret = (long)(cache_model.power * 1000);
313 0 : break;
314 0 : case 4:
315 0 : ret = (long)(cache_model.cutoff * 1000);
316 0 : break;
317 0 : case 5:
318 0 : ret = (long)(cache_model.bigarena);
319 0 : break;
320 0 : default:
321 0 : pari_err_BUG("set_optimize");
322 0 : break;
323 : }
324 0 : if (g != NULL) {
325 0 : ulong val = itou(g);
326 :
327 0 : switch (what) {
328 0 : case 1: cache_model.arena = val; break;
329 0 : case 2: slow2_in_roots = (double)val / 1000.; break;
330 0 : case 3: cache_model.power = (double)val / 1000.; break;
331 0 : case 4: cache_model.cutoff = (double)val / 1000.; break;
332 0 : case 5: cache_model.bigarena = val; break;
333 : }
334 : }
335 0 : return ret;
336 : }
337 :
338 : /* s is odd; prime (starting from 3 = known_primes[2]), terminated by a 0 byte.
339 : * Checks n odd numbers starting at 'start', setting bytes to 0 (composite)
340 : * or 1 (prime), starting at data */
341 : static void
342 7134 : sieve_chunk(pari_prime *known_primes, ulong s, byteptr data, ulong n)
343 : {
344 7134 : ulong p, cnt = n-1, start = s;
345 : pari_prime *q;
346 :
347 7134 : memset(data, 0, n);
348 7134 : start >>= 1; /* (start - 1)/2 */
349 7134 : start += n; /* Corresponds to the end */
350 : /* data corresponds to start, q runs over primediffs */
351 1024872 : for (q = known_primes + 1, p = 3; p; p = *++q)
352 : { /* first odd number >= start > p and divisible by p
353 : = last odd number <= start + 2p - 2 and 0 (mod p)
354 : = p + last number <= start + p - 2 and 0 (mod 2p)
355 : = p + start+p-2 - (start+p-2) % 2p
356 : = start + 2(p - 1 - ((start-1)/2 + (p-1)/2) % p). */
357 1017738 : long off = cnt - ((start+(p>>1)) % p);
358 1625414974 : while (off >= 0) { data[off] = 1; off -= p; }
359 : }
360 7134 : }
361 :
362 : static void
363 1862 : set_prodprimes(void)
364 : {
365 1862 : pari_sp ltop = avma, av;
366 1862 : ulong b = 1UL << 8, M = minuu(maxprime(), GP_DATA->factorlimit);
367 1862 : GEN W, w, v = primes_interval_zv(3, M);
368 1862 : long s, u, j, jold, l = lg(v);
369 :
370 1862 : W = cgetg(64+1, t_VEC);
371 152730550 : for (jold = j = u = 1; j < l; j++)
372 152728688 : if (j==l-1 || uel(v,j) >= b)
373 : {
374 24206 : long lw = (j == l-1? l: j) - jold + 1;
375 24206 : w = v+jold-1; w[0] = evaltyp(t_VECSMALL) | _evallg(lw);
376 24206 : gel(W,u++) = zv_prod_Z(w); /* p_jold ... p_{j-1} */
377 24206 : jold = j; b *= 2;
378 24206 : if (b > M) b = M; /* truncate last run */
379 : }
380 1862 : setlg(W, u);
381 24206 : for (j = 2; j < u; j++) gel(W,j) = mulii(gel(W,j-1), gel(W,j));
382 1862 : s = gsizeword(W);
383 1862 : w = (GEN)pari_malloc(s*sizeof(long));
384 1862 : av = (pari_sp)(w + s);
385 1862 : _prodprimes_addr = w;
386 1862 : _prodprimes = gcopy_avma(W, &av);
387 1862 : set_avma(ltop);
388 1862 : }
389 :
390 : static void
391 1862 : initprimes0(ulong maxnum, long *lenp, pari_prime *p1)
392 : {
393 1862 : pari_sp av = avma, bot = pari_mainstack->bot;
394 : long alloced, psize;
395 : byteptr q, end, p;
396 : ulong remains, curlow, rootnum, asize, prime_above, last;
397 : pari_prime *end1, *curdiff, *p_prime_above;
398 :
399 1862 : if (!odd(maxnum)) maxnum--; /* make it odd. */
400 : /* base case */
401 1862 : if (maxnum < 1ul<<17) { initprimes1(maxnum>>1, lenp, p1); return; }
402 :
403 : /* Checked to be enough up to 40e6, attained at 155893 */
404 1862 : rootnum = usqrt(maxnum) | 1;
405 1862 : initprimes1(rootnum>>1, &psize, p1);
406 1862 : last = rootnum;
407 1862 : end1 = p1 + psize - 1;
408 1862 : remains = (maxnum - last) >> 1; /* number of odd numbers to check */
409 : /* we access primes array of psize too; but we access it consecutively,
410 : * thus we do not include it in fixed_to_cache */
411 1862 : asize = good_arena_size((ulong)(rootnum * slow2_in_roots), remains+1, 0,
412 : &cache_model) - 1;
413 : /* enough room on the stack ? */
414 1862 : alloced = (((byteptr)avma) <= ((byteptr)bot) + asize);
415 1862 : p = (byteptr)(alloced? pari_malloc(asize+1): stack_malloc(asize+1));
416 1862 : end = p + asize; /* the 0 sentinel goes at end. */
417 1862 : curlow = last + 2; /* First candidate: know primes up to last (odd). */
418 1862 : curdiff = end1;
419 :
420 : /* During each iteration p..end-1 represents a range of odd
421 : numbers. */
422 1862 : p_prime_above = p1 + 2;
423 1862 : prime_above = 3;
424 8996 : while (remains)
425 : { /* cycle over arenas; performance not crucial */
426 : pari_prime was_delta;
427 7134 : if (asize > remains) { asize = remains; end = p + asize; }
428 : /* Fake the upper limit appropriate for the given arena */
429 325536 : while (prime_above*prime_above <= curlow + (asize << 1) && *p_prime_above)
430 318402 : prime_above = *p_prime_above++;
431 7134 : was_delta = *p_prime_above;
432 7134 : *p_prime_above = 0; /* sentinel for sieve_chunk */
433 7134 : sieve_chunk(p1, curlow, p, asize);
434 7134 : *p_prime_above = was_delta; /* restore */
435 :
436 7134 : p[asize] = 0; /* sentinel */
437 7134 : for (q = p; ; q++)
438 : { /* q runs over addresses corresponding to primes */
439 975278046 : while (*q) q++; /* use sentinel at end */
440 152417420 : if (q >= end) break;
441 152410286 : *curdiff++ = (pari_prime) 2*(q-p) + curlow;
442 : }
443 7134 : remains -= asize;
444 7134 : curlow += (asize<<1);
445 : }
446 1862 : *curdiff++ = 0; /* sentinel */
447 1862 : *lenp = curdiff - p1;
448 1862 : if (alloced) pari_free(p); else set_avma(av);
449 : }
450 :
451 : ulong
452 46725056 : maxprime(void) { return pari_PRIMES? pari_PRIMES[pari_PRIMES[0]]: 0; }
453 : ulong
454 70038110 : maxprimelim(void) { return pari_PRIMES? _maxprimelim: 0; }
455 : ulong
456 196 : maxprimeN(void) { return pari_PRIMES? pari_PRIMES[0]: 0; }
457 : GEN
458 2691342 : prodprimes(void) { return pari_PRIMES? _prodprimes: NULL; }
459 : void
460 0 : maxprime_check(ulong c) { if (maxprime() < c) pari_err_MAXPRIME(c); }
461 :
462 : static pari_prime*
463 1862 : initprimes(ulong maxnum)
464 : {
465 : pari_prime *t;
466 : long len;
467 : ulong N;
468 1862 : if (maxnum < 65537)
469 : {
470 0 : maxnum = 65537;
471 0 : N = 6543;
472 : }
473 : else
474 1862 : N = (long) ceil(primepi_upper_bound((double)maxnum));
475 1862 : t = (pari_prime*) pari_malloc(sizeof(*t) * (N+2));
476 1862 : initprimes0(maxnum, &len, t+1); t[0] = (pari_prime)(len-1);
477 1862 : _maxprimelim = maxnum;
478 1862 : return (pari_prime*) pari_realloc(t, sizeof(*t) * (len+1));
479 : }
480 :
481 : void
482 1862 : initprimetable(ulong maxnum)
483 : {
484 1862 : pari_prime *old = pari_PRIMES;
485 : #ifdef LONG_IS_64BIT
486 1604 : maxnum = minuu(maxnum, 4294967295);
487 : #endif
488 1862 : pari_PRIMES = initprimes(maxnum);
489 1862 : if (old) free(old);
490 1862 : set_prodprimes();
491 1862 : }
492 :
493 : /**********************************************************************/
494 : /*** ***/
495 : /*** forprime ***/
496 : /*** ***/
497 : /**********************************************************************/
498 :
499 : /* return good chunk size for sieve, 16 | chunk + 2 */
500 : static ulong
501 8482581 : optimize_chunk(ulong a, ulong b)
502 : {
503 : /* TODO: Optimize size (surely < 512k to stay in L2 cache, but not so large
504 : * as to force recalculating too often). */
505 : /* bigarena is in bytes, we use bits, and only odds */
506 8482581 : ulong defchunk = (a>>31) > 1 ? 0x80000UL : 0x8000;
507 8482581 : ulong chunk = (cache_model.bigarena ? cache_model.bigarena : defchunk)<<4;
508 8482581 : ulong tmp = (b - a) / chunk + 1;
509 :
510 8482581 : if (tmp == 1)
511 196 : chunk = b - a + 16;
512 : else
513 8482385 : chunk = (b - a) / tmp + 15;
514 : /* ensure 16 | chunk + 2 */
515 8482581 : return (((chunk + 2)>>4)<<4) - 2;
516 : }
517 : static void
518 8482580 : sieve_init(forprime_t *T, ulong a, ulong b)
519 : {
520 8482580 : T->sieveb = b;
521 8482580 : T->chunk = optimize_chunk(a, b);
522 : /* >> 1 [only odds] + 3 [convert from bits to bytes] */
523 8482585 : T->isieve = (unsigned char*)stack_malloc(((T->chunk+2) >> 4) + 1);
524 8482541 : T->cache[0] = 0;
525 8482541 : T->a = a;
526 8482541 : T->end = minuu(a + T->chunk, b);
527 8482527 : T->pos = T->maxpos = 0;
528 8482527 : }
529 :
530 : enum {PRST_none, PRST_diffptr, PRST_sieve, PRST_unextprime, PRST_nextprime};
531 :
532 : static void
533 13688812 : u_forprime_set_prime_table(forprime_t *T, ulong a)
534 : {
535 13688812 : T->strategy = PRST_diffptr;
536 13688812 : if (a < 3)
537 : {
538 2396713 : T->p = 0;
539 2396713 : T->n = 0;
540 : }
541 : else
542 : {
543 11292099 : long n = PRIMES_search(a - 1);
544 11292017 : if (n < 0) n = - n - 1;
545 11292017 : T->n = n;
546 11292017 : T->p = pari_PRIMES[n];
547 : }
548 13688730 : }
549 :
550 : /* Set p so that p + q the smallest integer = c (mod q) and > original p.
551 : * Assume 0 < c < q. */
552 : static void
553 101996 : arith_set(forprime_t *T)
554 : {
555 101996 : ulong r = T->p % T->q; /* 0 <= r <= min(p, q-1) */
556 101996 : pari_sp av = avma;
557 101996 : GEN d = adduu(T->p - r, T->c); /* = c mod q */
558 101996 : if (T->c > r) d = subiu(d, T->q);
559 : /* d = c mod q, d = c > r? p-r+c-q: p-r+c, so that
560 : * d <= p and d+q = c>r? p-r+c : p-r+c+q > p */
561 101996 : if (signe(d) <= 0)
562 : {
563 20 : T->p = 0;
564 20 : T->strategy = PRST_nextprime;
565 20 : affii(d, T->pp);
566 : }
567 : else
568 101976 : T->p = itou_or_0(d);
569 101996 : set_avma(av);
570 101996 : }
571 :
572 : /* Run through primes in arithmetic progression = c (mod q).
573 : * Warning: b = ULONG_MAX may signal that we are called by higher level
574 : * function handling a continuation for larger b; this sentinel value
575 : * must not be modified */
576 : static int
577 29011133 : u_forprime_sieve_arith_init(forprime_t *T, struct pari_sieve *psieve,
578 : ulong a, ulong b, ulong c, ulong q)
579 : {
580 : #ifdef LONG_IS_64BIT
581 24876466 : const ulong UPRIME_MAX = 18446744073709551557UL;
582 : #else
583 4134667 : const ulong UPRIME_MAX = 4294967291UL;
584 : #endif
585 : ulong Plim, P, P2, Y, sieveb;
586 :
587 29011133 : if (!odd(b) && b > 2) b--;
588 29011683 : if (a > b || b < 2)
589 : {
590 882427 : T->strategy = PRST_diffptr; /* paranoia */
591 882427 : T->p = 0; /* empty */
592 882427 : T->b = 0; /* empty */
593 882427 : T->n = 0;
594 882427 : return 0;
595 : }
596 28129256 : P = maxprime();
597 28128903 : if (b != ULONG_MAX && b > UPRIME_MAX) b = UPRIME_MAX;
598 28128903 : if (q != 1)
599 : {
600 : ulong D;
601 587710 : c %= q; D = ugcd(c, q);
602 587711 : if (D != 1) { a = maxuu(a,D); if (b != ULONG_MAX) b = minuu(b,D); }
603 587711 : if (odd(q) && (a > 2 || c != 2))
604 : { /* only *odd* primes. If a <= c = 2, then p = 2 must be included :-( */
605 509245 : if (!odd(c)) c += q;
606 510357 : q <<= 1;
607 : }
608 : }
609 28129997 : T->q = q;
610 28129997 : T->c = c;
611 28129997 : T->strategy = PRST_none; /* unknown */
612 28129997 : T->psieve = psieve; /* unused for now */
613 28129997 : T->isieve = NULL; /* unused for now */
614 28129997 : T->b = b;
615 28129997 : if (P >= b) { /* [a,b] \subset prime table */
616 10082578 : u_forprime_set_prime_table(T, a);
617 10082322 : return 1;
618 : }
619 : /* b > P */
620 18047419 : if (a >= P)
621 : {
622 14441634 : T->p = a - 1;
623 14441634 : if (T->q != 1) arith_set(T);
624 : }
625 : else
626 3605785 : u_forprime_set_prime_table(T, a);
627 18047390 : if (T->strategy == PRST_none) T->strategy = PRST_unextprime;
628 : /* now strategy is either PRST_diffptr or PRST_unextprime */
629 :
630 18047390 : P2 = (P & HIGHMASK)? 0 : P*P;
631 18047390 : sieveb = b; if (P2 && P2 < b) sieveb = P2;
632 : /* maxprime^2 >= sieveb */
633 18047390 : Plim = maxprimelim();
634 18047356 : if (a <= Plim) a = Plim + 1;
635 18047356 : if (sieveb < a + 16) return 1;
636 8984482 : Y = sieveb - a + 1; /* number of integers in sievable interval > 16 */
637 8984482 : P = usqrt(sieveb); /* largest sieving prime */
638 : /* FIXME: should sieve as well if q != 1, adapt sieve code */
639 8984651 : if (q == 1 && (!P2 || P2 > a) && 3/M_LN2 * Y >= uprimepi(P))
640 : /* Sieve implemented & possible & not too costly. Cost model is
641 : * - nextprime: about Y / log(b) primes to test [neglect cost for composites]
642 : * individual cost average = 3 log2(b) mulmod, total = 3 Y / log(2) mulmod
643 : * - sieve: pi(P) mod + Y loglog(b) add
644 : * Since loglog(b) < 4, and add < 10*mulmod, we neglect the Y loglog(b) term.
645 : * We have mod < mulmod < 2*mod; for now, assume mulmod ~ mod. */
646 : {
647 8482592 : if (T->strategy == PRST_unextprime) T->strategy = PRST_sieve;
648 8482592 : sieve_init(T, a, sieveb);
649 : }
650 8984728 : return 1;
651 : }
652 :
653 : int
654 23646784 : u_forprime_arith_init(forprime_t *T, ulong a, ulong b, ulong c, ulong q)
655 23646784 : { return u_forprime_sieve_arith_init(T, NULL, a, b, c, q); }
656 :
657 : /* will run through primes in [a,b] */
658 : int
659 23054933 : u_forprime_init(forprime_t *T, ulong a, ulong b)
660 23054933 : { return u_forprime_arith_init(T, a,b, 0,1); }
661 :
662 : /* will run through primes in [a,b] */
663 : static int
664 5360151 : u_forprime_sieve_init(forprime_t *T, struct pari_sieve *s, ulong b)
665 5360151 : { return u_forprime_sieve_arith_init(T, s, s->start, b, s->c, s->q); }
666 :
667 : /* now only run through primes <= c; assume c <= b above */
668 : void
669 63 : u_forprime_restrict(forprime_t *T, ulong c) { T->b = c; }
670 :
671 : /* b = NULL: loop forever */
672 : int
673 2420 : forprimestep_init(forprime_t *T, GEN a, GEN b, GEN q)
674 : {
675 2420 : GEN c = NULL;
676 : long lb;
677 :
678 2420 : a = gceil(a); if (typ(a) != t_INT) pari_err_TYPE("forprime_init",a);
679 2420 : T->qq = NULL; T->q = 1; T->c = 0;
680 2420 : if (q)
681 : {
682 133 : switch(typ(q))
683 : {
684 56 : case t_INT:
685 56 : c = a; break;
686 77 : case t_INTMOD:
687 77 : c = gel(q,2); q = gel(q,1);
688 : /* first int >= initial a which is = c (mod q) */
689 77 : a = addii(a, modii(subii(c,a), q)); break;
690 0 : default: pari_err_TYPE("forprimestep_init",q);
691 : }
692 133 : if (signe(q) <= 0) pari_err_TYPE("forprimestep_init (q <= 0)",q);
693 133 : if (equali1(q)) c = q = NULL;
694 : else
695 : {
696 133 : GEN D = gcdii(c, q);
697 133 : if (!is_pm1(D))
698 : { /* at most one prime: c */
699 42 : if (cmpii(a, D) < 0) a = D;
700 42 : if (gcmp(b, D) > 0) b = D;
701 : }
702 133 : if ((T->q = itou_or_0(q)))
703 125 : T->c = umodiu(c, T->q);
704 : else
705 8 : T->qq = q;
706 : }
707 : }
708 2420 : if (signe(a) <= 0) a = q? modii(a, q): gen_1;
709 2420 : if (b && typ(b) != t_INFINITY)
710 : {
711 1013 : b = gfloor(b);
712 1013 : if (typ(b) != t_INT) pari_err_TYPE("forprime_init",b);
713 1013 : if (signe(b) < 0 || cmpii(a,b) > 0)
714 : {
715 21 : T->strategy = PRST_nextprime; /* paranoia */
716 21 : T->bb = T->pp = gen_0; return 0;
717 : }
718 992 : lb = lgefint(b);
719 992 : T->bb = b;
720 : }
721 1407 : else if (!b || inf_get_sign(b) > 0)
722 : {
723 1407 : lb = lgefint(a) + 4;
724 1407 : T->bb = NULL;
725 : }
726 : else /* b == -oo */
727 : {
728 0 : T->strategy = PRST_nextprime; /* paranoia */
729 0 : T->bb = T->pp = gen_0; return 0;
730 : }
731 2399 : T->pp = cgeti(T->qq? maxuu(lb, lgefint(T->qq)): lb);
732 : /* a, b are positive integers, a <= b */
733 2399 : if (!T->qq && lgefint(a) == 3) /* lb == 3 implies b != NULL */
734 2256 : return u_forprime_arith_init(T, uel(a,2), lb == 3? uel(b,2): ULONG_MAX,
735 : T->c, T->q);
736 143 : T->strategy = PRST_nextprime;
737 143 : affii(T->qq? subii(a,T->qq): subiu(a,T->q), T->pp); return 1;
738 : }
739 : int
740 1315 : forprime_init(forprime_t *T, GEN a, GEN b)
741 1315 : { return forprimestep_init(T,a,b,NULL); }
742 :
743 : /* assume a <= b <= maxprime()^2, a,b odd, sieve[n] corresponds to
744 : * a+16*n, a+16*n+2, ..., a+16*n+14 (bits 0 to 7)
745 : * maxpos = index of last sieve cell.
746 : * b-a+2 must be divisible by 16 for use by u_forprime_next */
747 : static void
748 9129 : sieve_block(ulong a, ulong b, ulong maxpos, unsigned char* sieve)
749 : {
750 9129 : ulong i, lim = usqrt(b), sz = (b-a) >> 1;
751 9129 : (void)memset(sieve, 0, maxpos+1);
752 9129 : for (i = 2;; i++)
753 24482880 : { /* p is odd */
754 24492009 : ulong k, r, p = pari_PRIMES[i]; /* starts at p = 3 */
755 24492009 : if (p > lim) break;
756 :
757 : /* solve a + 2k = 0 (mod p) */
758 24482880 : r = a % p;
759 24482880 : if (r == 0)
760 16042 : k = 0;
761 : else
762 : {
763 24466838 : k = p - r;
764 24466838 : if (odd(k)) k += p;
765 24466838 : k >>= 1;
766 : }
767 : /* m = a + 2k is the smallest odd m >= a, p | m */
768 : /* position n (corresponds to a+2n) is sieve[n>>3], bit n&7 */
769 5732223569 : while (k <= sz) { sieve[k>>3] |= 1 << (k&7); k += p; /* 2k += 2p */ }
770 : }
771 9129 : }
772 :
773 : static void
774 1862 : pari_sieve_init(struct pari_sieve *s, ulong a, ulong b)
775 : {
776 1862 : ulong maxpos= (b - a) >> 4;
777 1862 : s->start = a; s->end = b;
778 1862 : s->sieve = (unsigned char*) pari_malloc(maxpos+1);
779 1862 : s->c = 0; s->q = 1;
780 1862 : sieve_block(a, b, maxpos, s->sieve);
781 1862 : s->maxpos = maxpos; /* must be last in case of SIGINT */
782 1862 : }
783 :
784 : static struct pari_sieve pari_sieve_modular;
785 :
786 : #ifdef LONG_IS_64BIT
787 : #define PARI_MODULAR_BASE ((1UL<<((BITS_IN_LONG-2)>>1))+1)
788 : #else
789 : #define PARI_MODULAR_BASE ((1UL<<(BITS_IN_LONG-1))+1)
790 : #endif
791 :
792 : void
793 1862 : pari_init_primes(ulong maxprime)
794 : {
795 1862 : ulong a = PARI_MODULAR_BASE, b = a + (1UL<<20)-2;
796 1862 : initprimetable(maxprime);
797 1862 : pari_sieve_init(&pari_sieve_modular, a, b);
798 1862 : }
799 :
800 : void
801 1862 : pari_close_primes(void)
802 : {
803 1862 : if (pari_PRIMES)
804 : {
805 1862 : pari_free(pari_PRIMES);
806 1862 : pari_free(_prodprimes_addr);
807 : }
808 1862 : pari_free(pari_sieve_modular.sieve);
809 1862 : }
810 :
811 : void
812 4506071 : init_modular_small(forprime_t *S)
813 : {
814 : #ifdef LONG_IS_64BIT
815 3862402 : u_forprime_sieve_init(S, &pari_sieve_modular, ULONG_MAX);
816 : #else
817 643669 : ulong a = (1UL<<((BITS_IN_LONG-2)>>1))+1;
818 643669 : u_forprime_init(S, a, ULONG_MAX);
819 : #endif
820 4506103 : }
821 :
822 : void
823 10473995 : init_modular_big(forprime_t *S)
824 : {
825 : #ifdef LONG_IS_64BIT
826 8976244 : u_forprime_init(S, HIGHBIT + 1, ULONG_MAX);
827 : #else
828 1497751 : u_forprime_sieve_init(S, &pari_sieve_modular, ULONG_MAX);
829 : #endif
830 10474051 : }
831 :
832 : /* T->cache is a 0-terminated list of primes, return the first one and
833 : * remove it from list. Most of the time the list contains a single prime */
834 : static ulong
835 129997653 : shift_cache(forprime_t *T)
836 : {
837 : long i;
838 129997653 : T->p = T->cache[0];
839 173802329 : for (i = 1;; i++) /* remove one prime from cache */
840 173802329 : if (! (T->cache[i-1] = T->cache[i]) ) break;
841 129997653 : return T->p;
842 : }
843 :
844 : ulong
845 207635662 : u_forprime_next(forprime_t *T)
846 : {
847 207635662 : if (T->strategy == PRST_diffptr)
848 : {
849 : for(;;)
850 : {
851 221007606 : if (++T->n <= pari_PRIMES[0])
852 : {
853 221007445 : T->p = pari_PRIMES[T->n];
854 221007445 : if (T->p > T->b) return 0;
855 220820462 : if (T->q == 1 || T->p % T->q == T->c) return T->p;
856 : }
857 : else
858 : { /* beyond the table */
859 161 : T->strategy = T->isieve? PRST_sieve: PRST_unextprime;
860 161 : if (T->q != 1) { arith_set(T); if (!T->p) return 0; }
861 : /* T->p possibly not a prime if q != 1 */
862 161 : break;
863 : }
864 : }
865 : }
866 144757744 : if (T->strategy == PRST_sieve)
867 : { /* require sieveb - a >= 16 */
868 : ulong n;
869 129998319 : if (T->cache[0]) return shift_cache(T);
870 92983313 : NEXT_CHUNK:
871 92991734 : if (T->psieve)
872 : {
873 5360175 : T->sieve = T->psieve->sieve;
874 5360175 : T->end = T->psieve->end;
875 5360175 : if (T->end > T->sieveb) T->end = T->sieveb;
876 5360175 : T->maxpos = T->psieve->maxpos;
877 5360175 : T->pos = 0;
878 5360175 : T->psieve = NULL;
879 : }
880 140787931 : for (n = T->pos; n < T->maxpos; n++)
881 140777481 : if (T->sieve[n] != 0xFF)
882 : {
883 92981284 : unsigned char mask = T->sieve[n];
884 92981284 : ulong p = T->a + (n<<4);
885 92981284 : long i = 0;
886 92981284 : T->pos = n;
887 92981284 : if (!(mask & 1)) T->cache[i++] = p;
888 92981284 : if (!(mask & 2)) T->cache[i++] = p+2;
889 92981284 : if (!(mask & 4)) T->cache[i++] = p+4;
890 92981284 : if (!(mask & 8)) T->cache[i++] = p+6;
891 92981284 : if (!(mask & 16)) T->cache[i++] = p+8;
892 92981284 : if (!(mask & 32)) T->cache[i++] = p+10;
893 92981284 : if (!(mask & 64)) T->cache[i++] = p+12;
894 92981284 : if (!(mask &128)) T->cache[i++] = p+14;
895 92981284 : T->cache[i] = 0;
896 92981284 : T->pos = n+1;
897 92981284 : return shift_cache(T);
898 : }
899 : /* n = T->maxpos, last cell: check p <= b */
900 10450 : if (T->maxpos && n == T->maxpos && T->sieve[n] != 0xFF)
901 : {
902 2873 : unsigned char mask = T->sieve[n];
903 2873 : ulong p = T->a + (n<<4);
904 2873 : long i = 0;
905 2873 : T->pos = n;
906 2873 : if (!(mask & 1) && p <= T->sieveb) T->cache[i++] = p;
907 2873 : if (!(mask & 2) && p <= T->sieveb-2) T->cache[i++] = p+2;
908 2873 : if (!(mask & 4) && p <= T->sieveb-4) T->cache[i++] = p+4;
909 2873 : if (!(mask & 8) && p <= T->sieveb-6) T->cache[i++] = p+6;
910 2873 : if (!(mask & 16) && p <= T->sieveb-8) T->cache[i++] = p+8;
911 2873 : if (!(mask & 32) && p <= T->sieveb-10) T->cache[i++] = p+10;
912 2873 : if (!(mask & 64) && p <= T->sieveb-12) T->cache[i++] = p+12;
913 2873 : if (!(mask &128) && p <= T->sieveb-14) T->cache[i++] = p+14;
914 2873 : if (i)
915 : {
916 2772 : T->cache[i] = 0;
917 2772 : T->pos = n+1;
918 2772 : return shift_cache(T);
919 : }
920 : }
921 :
922 7678 : if (T->maxpos && T->end >= T->sieveb) /* done with sieves ? */
923 : {
924 419 : if (T->sieveb == T->b && T->b != ULONG_MAX) return 0;
925 1 : T->strategy = PRST_unextprime;
926 : }
927 : else
928 : { /* initialize next chunk */
929 7259 : T->sieve = T->isieve;
930 7259 : if (T->maxpos == 0)
931 3366 : T->a |= 1; /* first time; ensure odd */
932 : else
933 3893 : T->a = (T->end + 2) | 1;
934 7259 : T->end = T->a + T->chunk; /* may overflow */
935 7259 : if (T->end < T->a || T->end > T->sieveb) T->end = T->sieveb;
936 : /* end and a are odd; sieve[k] contains the a + 8*2k + (0,2,...,14).
937 : * The largest k is (end-a) >> 4 */
938 7259 : T->pos = 0;
939 7259 : T->maxpos = (T->end - T->a) >> 4; /* >= 1 */
940 7259 : sieve_block(T->a, T->end, T->maxpos, T->sieve);
941 8421 : goto NEXT_CHUNK;
942 : }
943 : }
944 14759426 : if (T->strategy == PRST_unextprime)
945 : {
946 14758443 : if (T->q == 1)
947 : {
948 : #ifdef LONG_IS_64BIT
949 14605308 : switch(T->p)
950 : {
951 : #define retp(x) return T->p = (HIGHBIT+x <= T->b)? HIGHBIT+x: 0
952 8976282 : case HIGHBIT: retp(29);
953 3180396 : case HIGHBIT + 29: retp(99);
954 355022 : case HIGHBIT + 99: retp(123);
955 204689 : case HIGHBIT +123: retp(131);
956 145522 : case HIGHBIT +131: retp(155);
957 124658 : case HIGHBIT +155: retp(255);
958 103364 : case HIGHBIT +255: retp(269);
959 93601 : case HIGHBIT +269: retp(359);
960 75202 : case HIGHBIT +359: retp(435);
961 55933 : case HIGHBIT +435: retp(449);
962 49122 : case HIGHBIT +449: retp(453);
963 46244 : case HIGHBIT +453: retp(485);
964 40257 : case HIGHBIT +485: retp(491);
965 37172 : case HIGHBIT +491: retp(543);
966 34773 : case HIGHBIT +543: retp(585);
967 32169 : case HIGHBIT +585: retp(599);
968 28169 : case HIGHBIT +599: retp(753);
969 27389 : case HIGHBIT +753: retp(849);
970 26333 : case HIGHBIT +849: retp(879);
971 24715 : case HIGHBIT +879: retp(885);
972 24014 : case HIGHBIT +885: retp(903);
973 23534 : case HIGHBIT +903: retp(995);
974 : #undef retp
975 : }
976 : #endif
977 896820 : T->p = unextprime(T->p + 1);
978 896846 : if (T->p > T->b) return 0;
979 : }
980 : else do {
981 2798512 : T->p += T->q;
982 2798512 : if (T->p < T->q || T->p > T->b) { T->p = 0; break; } /* overflow */
983 2798486 : } while (!uisprime(T->p));
984 1049852 : if (T->p && T->p <= T->b) return T->p;
985 : /* overflow ulong, switch to GEN */
986 49 : T->strategy = PRST_nextprime;
987 : }
988 1032 : return 0; /* overflow */
989 : }
990 :
991 : GEN
992 45385959 : forprime_next(forprime_t *T)
993 : {
994 : pari_sp av;
995 : GEN p;
996 45385959 : if (T->strategy != PRST_nextprime)
997 : {
998 45378080 : ulong u = u_forprime_next(T);
999 45378080 : if (u) { affui(u, T->pp); return T->pp; }
1000 : /* failure */
1001 814 : if (T->strategy != PRST_nextprime) return NULL; /* we're done */
1002 : /* overflow ulong, switch to GEN */
1003 48 : u = ULONG_MAX;
1004 48 : if (T->q > 1) u -= (ULONG_MAX-T->c) % T->q;
1005 48 : affui(u, T->pp);
1006 : }
1007 7927 : av = avma; p = T->pp;
1008 7927 : if (T->q == 1)
1009 : {
1010 7749 : p = nextprime(addiu(p, 1));
1011 7749 : if (T->bb && abscmpii(p, T->bb) > 0) return gc_NULL(av);
1012 : } else do {
1013 3341 : p = T->qq? addii(p, T->qq): addiu(p, T->q);
1014 3341 : if (T->bb && abscmpii(p, T->bb) > 0) return gc_NULL(av);
1015 3285 : } while (!BPSW_psp(p));
1016 7744 : affii(p, T->pp); return gc_const(av, T->pp);
1017 : }
1018 :
1019 : void
1020 1085 : forprimestep(GEN a, GEN b, GEN q, GEN code)
1021 : {
1022 1085 : pari_sp av = avma;
1023 : forprime_t T;
1024 :
1025 1085 : if (!forprimestep_init(&T, a,b,q)) { set_avma(av); return; }
1026 :
1027 1071 : push_lex(T.pp,code);
1028 309822 : while(forprime_next(&T))
1029 : {
1030 309178 : closure_evalvoid(code); if (loop_break()) break;
1031 : /* p changed in 'code', complain */
1032 308758 : if (get_lex(-1) != T.pp)
1033 7 : pari_err(e_MISC,"prime index read-only: was changed to %Ps", get_lex(-1));
1034 : }
1035 1064 : pop_lex(1); set_avma(av);
1036 : }
1037 : void
1038 959 : forprime(GEN a, GEN b, GEN code) { return forprimestep(a,b,NULL,code); }
1039 :
1040 : int
1041 70 : forcomposite_init(forcomposite_t *C, GEN a, GEN b)
1042 : {
1043 70 : pari_sp av = avma;
1044 70 : a = gceil(a);
1045 70 : if (typ(a)!=t_INT) pari_err_TYPE("forcomposite",a);
1046 70 : if (b) {
1047 63 : if (typ(b) == t_INFINITY) b = NULL;
1048 : else
1049 : {
1050 56 : b = gfloor(b);
1051 56 : if (typ(b)!=t_INT) pari_err_TYPE("forcomposite",b);
1052 : }
1053 : }
1054 70 : if (signe(a) < 0) pari_err_DOMAIN("forcomposite", "a", "<", gen_0, a);
1055 70 : if (abscmpiu(a, 4) < 0) a = utoipos(4);
1056 70 : C->first = 1;
1057 70 : if (!forprime_init(&C->T, a,b) && cmpii(a,b) > 0)
1058 : {
1059 7 : C->n = gen_1; /* in case caller forgets to check the return value */
1060 7 : C->b = gen_0; return gc_bool(av,0);
1061 : }
1062 63 : C->n = setloop(a);
1063 63 : C->b = b;
1064 63 : C->p = NULL; return 1;
1065 : }
1066 :
1067 : GEN
1068 238 : forcomposite_next(forcomposite_t *C)
1069 : {
1070 238 : if (C->first) /* first call ever */
1071 : {
1072 63 : C->first = 0;
1073 63 : C->p = forprime_next(&C->T);
1074 : }
1075 : else
1076 175 : C->n = incloop(C->n);
1077 238 : if (C->p)
1078 : {
1079 161 : if (cmpii(C->n, C->p) < 0) return C->n;
1080 77 : C->n = incloop(C->n);
1081 : /* n = p+1 */
1082 77 : C->p = forprime_next(&C->T); /* nextprime(p) > n */
1083 77 : if (C->p) return C->n;
1084 : }
1085 105 : if (!C->b || cmpii(C->n, C->b) <= 0) return C->n;
1086 42 : return NULL;
1087 : }
1088 :
1089 : void
1090 70 : forcomposite(GEN a, GEN b, GEN code)
1091 : {
1092 70 : pari_sp av = avma;
1093 : forcomposite_t T;
1094 : GEN n;
1095 70 : if (!forcomposite_init(&T,a,b)) return;
1096 63 : push_lex(T.n,code);
1097 238 : while((n = forcomposite_next(&T)))
1098 : {
1099 196 : closure_evalvoid(code); if (loop_break()) break;
1100 : /* n changed in 'code', complain */
1101 182 : if (get_lex(-1) != n)
1102 7 : pari_err(e_MISC,"index read-only: was changed to %Ps", get_lex(-1));
1103 : }
1104 56 : pop_lex(1); set_avma(av);
1105 : }
|