L-functions

PARI-GP version 2.16.2

Characters

A character on the abelian group $G=\sum_{j \leq k}\left(\mathbf{Z} / d_{j} \mathbf{Z}\right) \cdot g_{j}$, e.g. from znstar $(\mathrm{q}, 1) \leftrightarrow(\mathbf{Z} / q \mathbf{Z})^{*}$ or bnrinit $\leftrightarrow \overline{\mathrm{Cl}}_{\mathfrak{f}}(K)$, is coded by $\chi=$ $\left.c_{1}, \ldots, c_{k}\right]$ such that $\chi\left(g_{j}\right)=e\left(c_{j} / d_{j}\right)$. Our L-functions consider the attached primitive character.
Dirichlet characters $\chi_{q}(m, \cdot)$ in Conrey labelling system are alternatively concisely coded by $\operatorname{Mod}(\mathrm{m}, \mathrm{q})$. Finally, a quadratic character (D / \cdot) can also be coded by the integer D

L-function Constructors

An Ldata is a GP structure describing the functional equation for
$L(s)=\sum_{n>1} a_{n} n^{-s}$

- Dirichlet coefficients given by closure $a: N \mapsto\left[a_{1}, \ldots, a_{N}\right]$

Dirichlet coefficients $a^{*}(n)$ for dual L-function L^{*}.

- Euler factor $A=\left[a_{1}, \ldots, a_{d}\right]$ for $\gamma_{A}(s)=\prod_{i} \Gamma_{\mathbf{R}}\left(s+a_{i}\right)$,
- classical weight k (values at s and $k-s$ are related)
- conductor $N, \Lambda(s)=N^{s / 2} \gamma_{A}(s)$,
- root number $\varepsilon ; \Lambda(a, k-s)=\varepsilon \Lambda\left(a^{*}, s\right)$.
- polar part: list of $\left[\beta, P_{\beta}(x)\right]$

An Linit is a GP structure containing an Ldata L and an evaluation domain fixing a maximal order of derivation m and bit accuracy (realbitprecision), together with complex range

- for L-function: $R=[c, w, h]$ (coding $|\Re z-c| \leq w,|\Im z| \leq h$); or $R=[w, h]$ (for $c=k / 2$); or $R=[h]$ (for $c=k / 2, w=0$).
- for θ-function: $T=[\rho, \alpha]$ (for $|t| \geq \rho,|\arg t| \leq \alpha$); or $T=\rho$ (for $\alpha=0$)

Ldata constructors

Riemann ζ
Dirichlet for quadratic char. ($D /$.)
lfuncreate(1)
Dirichlet series $L\left(\chi_{q}(m, \cdot), s\right)$
Dedekind $\zeta_{K}, K=\mathbf{Q}[x] /(T)$
Hecke for $\chi \bmod \mathfrak{f}$
Artin L-function
Lattice Θ-function
From eigenform F
lfuncreate(D
lfuncreate(Mod(m,q))
lfuncreate($b n f$), lfuncreate (T) lfuncreate([bnr, $\chi]$)
funartin $(n f$, gal, $M, n)$ lfunqf (Q)
lfunmf (F)
Quotients of Dedekind η : $\prod_{i} \eta\left(m_{i, 1} \cdot \tau\right)^{m_{i, 2}}$ lfunetaquo (M)
$L(E, s), E$ elliptic curve E = ellinit(...
$L\left(S y m^{m} E, s\right), E$ elliptic curve
lfunsympow(E, m)
lfungenus2 $([P, Q])$
Genus 2 curve, $y^{2}+x Q=P$
funhgm(hgminit(a,b), t)
Hypergeometric motive $H(a, b ; t)$
lfundual (L)
dual L function \hat{L}
lfunmul $\left(L_{1}, L_{2}\right)$
L_{1} / L_{2}
$L(s-d)$
$L(s) \cdot L(s-d)$
twist by Dirichlet character
lfunshift (L, d)
lfunshift $(L, d, 1)$
lfuntwist(L, χ)
low-level constructor Ifuncreate $\left(\left[a, a^{*}, A, k, N\right.\right.$, eps, poles $\left.]\right)$ check functional equation (at t)
lfuncheckfeq($L,\{t\})$
lfunparams(L)
parameters $[N, k, A]$
nitialize for L
nitialize for θ
lfuninit $(L, R,\{m=0\})$ cost of lfuninit cost of lfunthetainit
$\operatorname{it}(L,\{T=1\},\{m=0\})$ lfuncost $(L, R,\{m=0\})$ lfunthetacost $(L, T,\{m=0\})$ lfunabelianrelinit

L-functions

L is an Ldata or an Linit (more efficient for many values).
Evaluate
$L^{(k)}(s) \quad \operatorname{lfun}(L, s,\{k=0\})$
$\Lambda^{(k)}(s)$ funlambda $(L, s,\{k=0\})$
$\theta^{(k)}(t)$
funta $(L, t,\{k=0\})$
lfunhardy (L, t)
generalized Hardy Z-function at t

Zeros

$\begin{array}{lr}\text { order of zero at } s=k / 2 & \text { lfunorderzero }(L,\{m=-1\}) \\ \text { zeros } s=k / 2+i t, 0 \leq t \leq T & \text { lfunzeros }(L, T,\{h\})\end{array}$
Dirichlet series and functional equation
$\left[a_{n}: 1 \leq n \leq N\right]$
lfunan (L, N)
Euler factor at p
lfuneuler (L, p)
conductor N of L
lfunconductor (L)
root number and residues
G-functions
Attached to inverse Mellin transform for $\gamma_{A}(s), A=\left[a_{1}, \ldots, a_{d}\right]$. initialize for G attached to $A \quad$ gammamellininvinit (A) $G^{(k)}(t) \quad$ gammamellininv $(G, t,\{k=0\})$
asymp. expansion of $G^{(k)}(t)$ gammamellininvasymp $(A, n,\{k=0\})$

Hypergeometric motives (HGM)

Hypergeometric templates

Below, H denotes an hypergeometric template from hgminit.
HGM template from $A=\left(\alpha_{j}\right), B=\left(\beta_{k}\right) \quad \operatorname{hgminit}(A,\{B\})$
...from cyclotomic parameters D, E
from gamma vector
α and β parameters for H
cyclotomic parameters (D, E) of H
. for all H of degree n
gamma vector for H
twist A and B by $1 / 2$
is H symmetrical at $t=1$?
parameters $[d, w,[P, T], M]$ for H hgminit $(A,\{B\})$ $\operatorname{hgminit}(D,\{$
$\operatorname{hgminit}(G)$
hgmalpha(H)
hgmcyclo(H)
hgmbydegree(n)
hgmgamma (H)
hgmtwist (H)
hgmissymmetrical(H)
hgmparams (H)

L-function

Let L be the L-function attached to the hypergeometric motive (H, t).
coefficient a_{n} of L
$\operatorname{hgmcoef}(H, t, n)$
coefficients $\left[a_{1}, \ldots, a_{n}\right]$ of L
Euler factor at p
and valuation of hgmeulerfactor (H, t, p)
\ldots and valuation of local conductor hgmeulerfactor $(H, t, p, \& e)$ return L as an Ldata
lfunhgm (H, t)

Based on an earlier version by Joseph H. Silverman January 2024 v2.38. Copyright © 2024 K. Belabas
Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to 〈Karim.Belabas@math.u-bordeaux.fr〉

