
Modular forms, modular symbols
(PARI-GP version 2.16.2)

Modular Forms
Dirichlet characters
Characters are encoded in three different ways:
• a t INT D ≡ 0, 1 mod 4: the quadratic character (D/·);
• a t INTMOD Mod(m, q), m ∈ (Z/q)∗ using a canonical bijection
with the dual group (the Conrey character χq(m, ·));
• a pair [G, chi], where G = znstar(q, 1) encodes (Z/qZ)∗ =∑

j≤k(Z/djZ) · gj and the vector chi = [c1, . . . , ck] encodes the

character such that χ(gj) = e(cj/dj).

initialize G = (Z/qZ)∗ G = znstar(q, 1)
convert datum D to [G,χ] znchar(D)
Galois orbits of Dirichlet characters chargalois(G)
Spaces of modular forms
Arguments of the form [N, k, χ] give the level weight and nebenty-
pus χ; χ can be omitted: [N, k] means trivial χ.
initialize Snewk (Γ0(N), χ) mfinit([N, k, χ], 0)
initialize Sk(Γ0(N), χ) mfinit([N, k, χ], 1)

initialize Soldk (Γ0(N), χ) mfinit([N, k, χ], 2)
initialize Ek(Γ0(N), χ) mfinit([N, k, χ], 3)
initialize Mk(Γ0(N), χ) mfinit([N, k, χ])
find eigenforms mfsplit(M)
statistics on self-growing caches getcache()

We let M = mfinit(. . .) denote a modular space.
describe the space M mfdescribe(M)
recover (N, k, χ) mfparams(M)
. . . the space identifier (0 to 4) mfspace(M)
. . . the dimension of M over C mfdim(M)
. . . a C-basis (fi) of M mfbasis(M)
. . . a basis (Fj) of eigenforms mfeigenbasis(M)
. . . polynomials defining Q(χ)(Fj)/Q(χ) mffields(M)

matrix of Hecke operator Tn on (fi) mfheckemat(M,n)
eigenvalues of wQ mfatkineigenvalues(M,Q)
basis of period poynomials for weight k mfperiodpolbasis(k)
basis of the Kohnen +-space mfkohnenbasis(M)
. . . new space and eigenforms mfkohneneigenbasis(M, b)

isomorphism S+k (4N,χ)→ S2k−1(N,χ2) mfkohnenbijection(M)

Useful data can also be obtained a priori, without computing a
complete modular space:
dimension of Snewk (Γ0(N), χ) mfdim([N, k, χ])
dimension of Sk(Γ0(N), χ) mfdim([N, k, χ], 1)

dimension of Soldk (Γ0(N), χ) mfdim([N, k, χ], 2)
dimension of Mk(Γ0(N), χ) mfdim([N, k, χ], 3)
dimension of Ek(Γ0(N), χ) mfdim([N, k, χ], 4)
Sturm’s bound for Mk(Γ0(N), χ) mfsturm(N, k)
Γ0(N) cosets
list of right Γ0(N) cosets mfcosets(N)
identify coset a matrix belongs to mftocoset

Cusps
a cusp is given by a rational number or oo.
lists of cusps of Γ0(N) mfcusps(N)
number of cusps of Γ0(N) mfnumcusps(N)
width of cusp c of Γ0(N) mfcuspwidth(N, c)
is cusp c regular for Mk(Γ0(N), χ)? mfcuspisregular([N, k, χ], c)

Create an individual modular form
Besides mfbasis and mfeigenbasis, an individual modular form
can be identified by a few coefficients.
modular form from coefficients mftobasis(mf,vec)

There are also many predefined ones:
Eisenstein series Ek on Sl2(Z) mfEk(k)
Eisenstein-Hurwitz series on Γ0(4) mfEH(k)
unary θ function (for character ψ) mfTheta({ψ})
Ramanujan’s ∆ mfDelta()
Ek(χ) mfeisenstein(k, χ)
Ek(χ1, χ2) mfeisenstein(k, χ1, χ2)
eta quotient

∏
i η(ai,1 · z)ai,2 mffrometaquo(a)

newform attached to ell. curve E/Q mffromell(E)
identify an L-function as a eigenform mffromlfun(L)
θ function attached to Q > 0 mffromqf(Q)
trace form in Snewk (Γ0(N), χ) mftraceform([N, k, χ])
trace form in Sk(Γ0(N), χ) mftraceform([N, k, χ], 1)
Operations on modular forms
In this section, f , g and the F [i] are modular forms
f × g mfmul(f, g)
f/g mfdiv(f, g)
fn mfpow(f, n)
f(q)/qv mfshift(f, v)∑

i≤k λiF [i], L = [λ1, . . . , λk] mflinear(F,L)
f = g? mfisequal(f,g)

expanding operator Bd(f) mfbd(f, d)
Hecke operator Tnf mfhecke(mf, f, n)
initialize Atkin–Lehner operator wQ mfatkininit(mf,Q)
. . . apply wQ to f mfatkin(wQ, f)
twist by the quadratic char (D/·) mftwist(f,D)
derivative wrt. q · d/dq mfderiv(f)
see f over an absolute field mfreltoabs(f)

Serre derivative
(
q · d

dq −
k
12E2

)
f mfderivE2(f)

Rankin-Cohen bracket [f, g]n mfbracket(f, g, n)
Shimura lift of f for discriminant D mfshimura(mf, f,D)
Properties of modular forms
In this section, f =

∑
n fnq

n is a modular form in some space M
with parameters N, k, χ.
describe the form f mfdescribe(f)
(N, k, χ) for form f mfparams(f)
the space identifier (0 to 4) for f mfspace(mf, f)
[f0, . . . , fn] mfcoefs(f, n)
fn mfcoef(f, n)
is f a CM form? mfisCM(f)
is f an eta quotient? mfisetaquo(f)
Galois rep. attached to all (1, χ) eigenforms mfgaloistype(M)
. . . single eigenform mfgaloistype(M,F )
. . . as a polynomial fixed by Ker ρF mfgaloisprojrep(M,F )
decompose f on mfbasis(M) mftobasis(M, f)
smallest level on which f is defined mfconductor(M, f)
decompose f on ⊕Snewk (Γ0(d)), d | N mftonew(M, f)
valuation of f at cusp c mfcuspval(M, f, c)
expansion at ∞ of f |k γ mfslashexpansion(M, f, γ, n)
n-Taylor expansion of f at i mftaylor(f, n)
all rational eigenforms matching criteria mfeigensearch

. . . forms matching criteria mfsearch

Forms embedded into C
Given a modular form f in Mk(Γ0(N), χ) its field of definition Q(f)
has n = [Q(f) : Q(χ)] embeddings into the complex numbers. If
n = 1, the following functions return a single answer, attached to
the canonical embedding of f in C[[q]]; else a vector of n results,
corresponding to the n conjugates of f .
complex embeddings of Q(f) mfembed(f)
... embed coefs of f mfembed(f, v)
evaluate f at τ ∈ H mfeval(f, τ)
L-function attached to f lfunmf(mf, f)
. . . eigenforms of new space M lfunmf(M)
Periods and symbols
The functions in this section depend on [Q(f) : Q(χ)] as above.
initialize symbol fs attached to f mfsymbol(M, f)
evaluate symbol fs on path p mfsymboleval(fs, p)
Petersson product of f and g mfpetersson(fs, gs)
period polynomial of form f mfperiodpol(M, fs)
period polynomials for eigensymbol FS mfmanin(FS)

Modular Symbols
Let G = Γ0(N), Vk = Q[X,Y ]k−2, Lk = Z[X,Y ]k−2 and ∆ =

Div0(P1(Q)). An element of ∆ is a path between cusps of X0(N)
via the identification [b] − [a] → path from a to b, coded by the
pair [a, b] where a, b are rationals or oo = (1 : 0).

Let Mk(G) = HomG(∆, Vk) ' H1
c (X0(N), Vk); an element of

Mk(G) is a Vk-valued modular symbol . There is a natural decom-
position Mk(G) = Mk(G)+ ⊕Mk(G)− under the action of the ∗
involution, induced by complex conjugation. The msinit function
computes either Mk (ε = 0) or its ±-parts (ε = ±1) and fixes a
minimal set of Z[G]-generators (gi) of ∆.

initialize M = Mk(Γ0(N))ε msinit(N, k, {ε = 0})
the level M msgetlevel(M)
the weight k msgetweight(M)
the sign ε msgetsign(M)
Farey symbol attached to G mspolygon(M)
. . . attached to H < G msfarey(F, inH)
H\G and right G-action mscosets(genG, inH)

Z[G]-generators (gi) and relations for ∆ mspathgens(M)
decompose p = [a, b] on the (gi) mspathlog(M,p)

Create a symbol
Eisenstein symbol attached to cusp c msfromcusp(M, c)
cuspidal symbol attached to E/Q msfromell(E)
symbol having given Hecke eigenvalues msfromhecke(M, v, {H})
is s a symbol ? msissymbol(M, s)
Operations on symbols
the list of all s(gi) mseval(M, s)
evaluate symbol s on path p = [a, b] mseval(M, s, p)
Petersson product of s and t mspetersson(M, s, t)
Operators on subspaces
An operator is given by a matrix of a fixed Q-basis. H, if given, is
a stable Q-subspace of Mk(G): operator is restricted to H.
matrix of Hecke operator Tp or Up mshecke(M,p, {H})
matrix of Atkin-Lehner wQ msatkinlehner(M,Q{H})
matrix of the ∗ involution msstar(M, {H})



Subspaces
A subspace is given by a structure allowing quick projection and
restriction of linear operators. Its fist component is a matrix with
integer coefficients whose columns for a Q-basis. If H is a Hecke-
stable subspace of Mk(G)+ or Mk(G)−, it can be split into a direct
sum of Hecke-simple subspaces. To a simple subspace corresponds
a single normalized newform

∑
n anq

n.
cuspidal subspace Sk(G)ε mscuspidal(M)
Eisenstein subspace Ek(G)ε mseisenstein(M)
new part of Sk(G)ε msnew(M)
split H into simple subspaces (of dim ≤ d) mssplit(M,H, {d})
dimension of a subspace msdim(M)
(a1, . . . , aB) for attached newform msqexpansion(M,H, {B})
Z-structure from H1(G,Lk) on subspace A mslattice(M,A)

Overconvergent symbols and p-adic L functions
Let M be a full modular symbol space given by msinit and p be
a prime. To a classical modular symbol φ of level N (vp(N) ≤ 1),
which is an eigenvector for Tp with nonzero eigenvalue ap, we can
attach a p-adic L-function Lp. The function Lp is defined on con-
tinuous characters of Gal(Q(µp∞ )/Q); in GP we allow characters
〈χ〉s1τs2 , where (s1, s2) are integers, τ is the Teichmüller character
and χ is the cyclotomic character.
The symbol φ can be lifted to an overconvergent symbol Φ, taking
values in spaces of p-adic distributions (represented in GP by a list
of moments modulo pn).
mspadicinit precomputes data used to lift symbols. If flag is given,
it speeds up the computation by assuming that vp(ap) = 0 if
flag = 0 (fastest), and that vp(ap) ≥ flag otherwise (faster as
flag increases).
mspadicmoments computes distributions mu attached to Φ allowing
to compute Lp to high accuracy.
initialize Mp to lift symbols mspadicinit(M,p, n, {flag})
lift symbol φ mstooms(Mp, φ)
eval overconvergent symbol Φ on path p msomseval(Mp,Φ, p)
mu for p-adic L-functions mspadicmoments(Mp, S, {D = 1})
L
(r)
p (χs), s = [s1, s2] mspadicL(mu, {s = 0}, {r = 0})

L̂p(τ i)(x) mspadicseries(mu, {i = 0})
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