| herbert granzow on Sat, 23 Aug 2008 16:21:13 +0200 | 
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
	
	| A12-140 class number of IQ(2^{1/n}) | 
 
- To: pari-users@list.cr.yp.to
- Subject: A12-140 class number of IQ(2^{1/n})
- From: "herbert granzow" <herbertgranzow@googlemail.com>
- Date: Sat, 23 Aug 2008 16:19:31 +0200
- Delivery-date: Sat, 23 Aug 2008 16:21:13 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed;        d=googlemail.com; s=gamma;        h=domainkey-signature:received:received:message-id:date:from:to         :subject:mime-version:content-type:content-transfer-encoding         :content-disposition;        bh=oA6/fHKA5oXHYPNlPBG7OA4/kKvz01qdwpSXsXAJTs4=;        b=D6WCfKcx67u/HGRh4qhTOWd22lTPReU/O6Heh61HFcY/Qna4fbknpn/XW0Yho6ejgV         kgU4x2rb0B29Gz2jS5M9kZTlsg81EB63DHaDxvY2G5lQndWONzIkRii3u9l2MwO2xCJM         n6HYDM+hwByKMbPvMdlk6CFae8pTAauzSYBnE=
- Domainkey-signature: a=rsa-sha1; c=nofws;        d=googlemail.com; s=gamma;        h=message-id:date:from:to:subject:mime-version:content-type         :content-transfer-encoding:content-disposition;        b=sfHeOK4ztVecsm9IWeOlqg8WqMVSw4lZXxAk5J0MbENG+Yc9Z4D4bJMvP09wfgzesD         HTJ5pv6wSoT0oSawg6ZQOJrTSJya4cRNtdKPiF0WZuGOWjA389iLKbf/nzWP8dy2BvKp         4ju4BEjFhYxvHjKPD4Rj/fGGU1GpmN+2JwQTY=
- Mailing-list: contact pari-users-help@list.cr.yp.to; run by ezmlm
Are there statements about the class number of IQ(2^{1/n}) (beside
general theorems like the Minkowski bound)?
Using PARI, I found that it equals 1 for n <= 46.
Does someone know a n for which the class number is > 1?
It can't be known that it is always 1 since this would solve an open
question.