| herbert granzow on Sat, 23 Aug 2008 16:26:36 +0200 | 
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
	
	| class number of IQ(2^{1/n}) | 
 
- To: pari-users@list.cr.yp.to
- Subject: class number of IQ(2^{1/n})
- From: "herbert granzow" <herbertgranzow@googlemail.com>
- Date: Sat, 23 Aug 2008 16:24:53 +0200
- Delivery-date: Sat, 23 Aug 2008 16:26:36 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed;        d=googlemail.com; s=gamma;        h=domainkey-signature:received:received:message-id:date:from:to         :subject:mime-version:content-type:content-transfer-encoding         :content-disposition;        bh=8GcmFFkcI/2s+Huac8h/y7W/tfggfaOEl3Fz6QjvNrk=;        b=XQBCHJswshsBCTiIHx2cPwtNv+O0FUVA/tKiLfXun61eanKt6KSB6G4udqf++8d2bb         CtsGphQbAVmh+FmGrnHwhVvW0wkskjjFJJlKhY8/L8y8rZbBNMVGwwkNsQ8NTI+dEEn7         f2dSaIjhEHQ3nknu1TQwVjAme2zxFikSjQZkc=
- Domainkey-signature: a=rsa-sha1; c=nofws;        d=googlemail.com; s=gamma;        h=message-id:date:from:to:subject:mime-version:content-type         :content-transfer-encoding:content-disposition;        b=k5D8Gx1iYJm3kXdFQ5NVM4XyCvIBwyZRZyIDt9Hku/UMw1W5zBOYq/iQ1AEwdeb6DV         QDYrw8VzPBZQ+79ZJiSTfyIQAa4zksF+R9+9mlPP4RkB5vsIlKV9RCD/HSNCiR2hX5+0         D8a2PczeafpuQhgVuGc9qkoUImaYteyy/jITg=
- Mailing-list: contact pari-users-help@list.cr.yp.to; run by ezmlm
Are there statements about the class number of IQ(2^{1/n}) (beside general
theorems like the Minkowski bound)?
Using PARI, I found that it equals 1 for n <= 46.
Does someone know a n for which the class number is > 1?
It can't be known that it is always 1 since this would solve an open
question.