Bill Allombert on Tue, 09 Jul 2024 17:47:40 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question: trying to locate other Diophantine triples from certain elliptic curves
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question: trying to locate other Diophantine triples from certain elliptic curves
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 9 Jul 2024 17:47:27 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1720540057; c=relaxed/relaxed; bh=Y+LxShndQPIK02FCuuRw+o5uV6Sjht2HuXfe/m34pRc=; h=DKIM-Signature:Date:From:To:Cc:Subject:Message-ID: Mail-Followup-To:References:MIME-Version:Content-Type: Content-Disposition:In-Reply-To; b=aZLy4AOUJgHpx0SX8o2f2hSX+8ooyl733FqWIJ2jwWwbSrlqKFZZnKEhs1fMQAVgqXmPzAaIDyZ7hwA7ubdfTClRPvcjmkBQxSy5e05etJX9hX4r9fmQYRsydEu0NXP7bU6wF/C0BSEGA6SbnwwBQyBQJ+MbosFY5srrVctMR2u0YoxB4QWyTrQ851JkNVi3Nks9Qez7sNLhqIelPGr183+09zANU8fuv+6DstkBzgoF9mPN2XuoeAeQQDew04zDiFIaPdIaGhUtgyvpToVzPTdATzDn2D6itdl0audgPKj0jyKeP95W9rmUNfRxhvhSW13AuJFr5S/O73CQO7Mu+MZfI6x8qBEj9T1G2RNpBy2Dv/Ya/AfYalUEVDOHHMcUHAd2q/3yGQ4y47R6k2H3cvF7r/rSLBXZOIUTPsBeeQhkUc7okKq2Z9BkLWPECu2aM6COJ+C63sNURJLxqJTXKr+djd0Xk9VSSAiY+Thyo91lUGFBmKGP54wU5eVzbJ6z+qCwM8gGMCQ5KYGP6FrlENV5+fcRV9iUWJXMk+vtBX2VovdI9xfE8TrD9G64JJVmzrwYzYUMl7ZXHQaLxktKdoghGmghZYt0MZ289buXiASukElORy0UvVhyS75Q9IwCG/U+PR7iZI/BNpjD4H0+1U95F6zt2+ISSgwkhMC+ai8=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1720540057; cv=none; b=UXfhnWuHpPJxBWkL6rfOzEo8PgGISRQoBaR9C89M4Zm3K4HUbIUL+7/UPjR8zky7V6gZyi0q2w5xDThobe0yTTn+CwjNkjte91+QiHpg634EVMCR2ITvrkw4YnvBNrgBdM0plMyl5r5OZIPX4u4srQQDrefZHdxD9BzIF+f3E9IMrGbvApomHtPLnpF714yRNBZXapzGHdY/H5dufamtaHIal84q01eYptZVxPE7jRXANDFOEY4xhwkaRIzM6M4wjSVG7J6Nz477M4wFfcPeuGPGXhyyDRmeh1USHsGgcyVvm3pTMkBpa/unQSLjYtBTse/KtvwzPB8yKRPiQ2l4xMkn9479RAN3lnGVZruoVQM2zgT+4eOpMQb9IiQnT+diUnxxhHiwwiGO3MPOYORnu1LXxBVk9HcAUk0ONWisZk2GAD6aQVLSsPx6UCLFHoyQ3znQz8+ypJHjPjW1vmHYTzcsRhwyLcaLXZpMvSPd+oh5yld9izpuXI6aGo5QQ/7Se370l6J2ycUbYo18xOaS6GUnCVIPYBQVnlPWQIgzMZFmOE2ZrHEQTPOI5tCO1w5IZgh+3lGbWqLm0s0Llodb5i87+iMkO91h6X8nGqZy3rLawL9ADBLqTsZ6f4crwWyblgNQGYlfxZ6Yam/SNzmK8Px+La8HEOjmNKIfrQQBjt4=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Cc: American Citizen <website.reader3@gmail.com>
- Delivery-date: Tue, 09 Jul 2024 17:47:40 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1720540057; bh=Y+LxShndQPIK02FCuuRw+o5uV6Sjht2HuXfe/m34pRc=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=i5JdROY23mkC052YSt1wOAlOqB0SX3Goj/LNtZEQW68HICMwhwe/YKjKjky03cRKl ZtA9pb0B/xApRB1e3z4bbqAfQ/NPWiBwMspmuwA37h2nOIx1kkJi+VLzgtL7R3FgXv dQIDMVzeSe5TxLDHeo0IdoVVHP+RvWAgY43ioCDfDkv6Pa/Rdd00AqB5qLnXCfus+f NAh7hfKd/qhiIlADUB8QzIOmeNoW4Jj0YqyxbC2GqqvY7bmeNqOCdyLRjbRMXBJA/7 pt8qvXxMyYIoiLFpjTZYleAukzuyYiNZKRe/n/eBlsK85/mBWGUigOHoQOCYvTs8je Eqm701BaC6cnQ8j1MlQXnIL+hKn3odh2LauGth+cqMwemATjZPCvADzHxHsz/l5zHq UIuQYE4tVjahGsEMn34vokt0SzPYbMevTYt34ZoQsjnt+kSQ6Sn5WeGr3zT11jwBp1 mZRF4Cq2Ijc+XGrjkh0LP8uJsbWEIvTl3FePE6bZ8a6J+RfW8hl7PH8tPa0gYvhcDg /pm6wYBUEF+v483BiLTpoVImJqTHgcHGXPdDwDGrc3k/mCxpKDSYn3QO7D1i7wh3BH 1mc/FqpeBK4TcXg/ufnbM5peXabkTasuzyG+1wfAXZOTssyrQ/FqEcuBsmiI/LOFfv HWwzfAD6lVgWjj/hUYYc+na8=
- In-reply-to: <CAD0p0K4hr-g9PuVbPfzVZcK4KQVP8Ba29ZjLovzt+XsXopWP=Q@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr, American Citizen <website.reader3@gmail.com>
- References: <762956a2-fb66-405f-87f4-66770b2d3deb@gmail.com> <71e6bf0b-c054-430f-9881-5e919a0eeebc@gmail.com> <CAD0p0K4hr-g9PuVbPfzVZcK4KQVP8Ba29ZjLovzt+XsXopWP=Q@mail.gmail.com>
On Tue, Jul 09, 2024 at 03:18:37PM +0100, John Cremona wrote:
> I think that Randall's question is this: given an elliptic curve in either
> long [a1,a2,a3,a4,a6] or short [0,0,0,A,B] format, to determine whether
> there is an isomorphic curve of the form E_triple(a,b,c) =
> [0,(a*b+a*c+b*c),0,(a*b*c)*(a+b+c),(a*b*c)2], and if so give the values of
> a,b,c and the transformation taking the input curve to the new curve.
Indeed, but this seems a bit circular: the equation of E_triple is
y^2 = (x+c*b)*(x+c*a)*(x+b*a)
This is equivalent to look for curves with full 2-torsion,
y^2 = (x+A)*(x+B)*(x+C) with A*B*C=z^2 is a square.
by setting A = c*b, B = c*a, C = b*a, z=a*b*c
and conversely
a=z/A b=z/B c= z/C
To preserve that, we need to pick a variable change of the form [u,r,0,0] with lead to
y^2 = (x+(A+r)/u^2)*(x+(B+r)/u^2)*(x+(C+r)/u^2)
so we want (A+r)*(B+r)*(C+r) to be a square which is identical to asking
for a point on E_triple !
So if (x,y) is a point on E(a,b,c) then
y/(c*b+x) , y/(c*a+x) and y/(b*a+r) is another triple.
An example:
E_triple(a,b,c) = [0,(a*b+a*c+b*c),0,(a*b*c)*(a+b+c),(a*b*c)^2]
E=ellinit(E_triple(5/4,5/36,32/9));
ellrank(E)
F=ellchangecurve(E,[1, -235/54,0,0])
E_triple(475/36,-19/60,-50/171)==F[1..5]
Cheers,
Bill