Bill Allombert on Sun, 19 Jan 2025 15:07:45 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Is it possible to have several solutions in this way to this equation using Pari/ɢᴘ ?
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Is it possible to have several solutions in this way to this equation using Pari/ɢᴘ ?
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sun, 19 Jan 2025 15:07:41 +0100
- Delivery-date: Sun, 19 Jan 2025 15:07:45 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1737295663; bh=8hBIQWksmxgzQvZuLCEL0Vz84x3Xn2iNLfyHQPV1nZw=; h=Date:From:To:Subject:References:In-Reply-To:From; b=gWe8n9tTH8JgdW8MxOHJusKAwfIVmOLHLstC5hFuEGyOzKqXYUtrPqGyogY8qY00q WWtratYAVheriYzinK2aga2i9tNj4eYuo38ajbczv+Wui52WZikAPUNcpSIXWmg6hp QVtifXTjI0uw5L6Du49kEWQyQVX85CmDreH7Ps76/hh63ByRzJk+2itBdASpl2zfrT fB6KMIwhPtMde2R3MEa2kcJJfiUrm9Ho8mepaTa0r41xauanY5V7/4W//7ssp1UD43 K2nHjXNbNnVCgQu7UvFAlxeMSoRY0FgkC0WrI+JBYQh7CvM+2DrhyfN/hsu1Dp+2Wx k2kIin2fLMBOX1sfpKxiQQ00sKEbA0814SmhRAn68D6X1sWXihCcc4dJAfFZ4V/Y5C 76sXkn4gSxAzwlapftnBoB8oEQkVm43PUvpTNzojmPFYbJ3UGi8vpA1oVwkHKJGEec S/Cc3WwuubOkAhMCjP4afSHUgZLKjZSTNpXDDLHvxDIhWLLIDu+yTafrFNZb7w1kL2 fFsc/joO5kY0ZFat8mDPt6JtpK3dieIDf0ylVFProUzz7jNmbI/7EXni2ugwr3d8dz NdmQK0jwiv7aoIHHxUh+xdZCR6SRa/OcWhJr3BGso87OhIxQQpyJPbzTgMy1EztitT i+BxrOP/iar4P/8sMnyX7clk=
- In-reply-to: <33cf76b3-b090-49b3-acdf-19f4271f1da6@laposte.net>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <33cf76b3-b090-49b3-acdf-19f4271f1da6@laposte.net>
On Sun, Jan 19, 2025 at 11:58:47AM +0100, Laël Cellier wrote:
> Bonjour,
>
> I’ve the following equation where the aim is to find /alpha/ and /beta/ as
> integers given /w/ and /v/ as integers
>
> alpha == w (v + w beta)
> Of course finding several solution for the equation above is possible, but
> then I want /nfroots()/ to return a second set of possible results given /c/
> and /b/ and where /x/ is an unknow
>
> xx=alpha^2*x^2+(2*alpha*beta-abs(b))*x+(beta^2-c);
> nfroots(,xx);
So given v,w,b,c you want to find integers alpha, beta and rational x such that
alpha = w *(v + w * beta)
alpha^2*x^2+(2*alpha*beta-abs(b))*x+(beta^2-c) = 0
Is it correct ?
Cheers,
Bill.