Bill Allombert on Tue, 09 Sep 2025 10:09:50 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: PARI/GP wrong on 7!!+7+1 being not prime, or oeis.org/Mathematica?
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: PARI/GP wrong on 7!!+7+1 being not prime, or oeis.org/Mathematica?
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 9 Sep 2025 10:09:45 +0200
- Delivery-date: Tue, 09 Sep 2025 10:09:50 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1757405387; bh=Ubm3QsgkquyFOmK4TIZK6uJOYOoXLrWvq3Pp/YL1fx4=; h=Date:From:To:Subject:References:In-Reply-To:From; b=KTZFgaOY7fYZNcn81O5MBL4CYMQYMRHWFWBc7itdpWD1MdqB5jROetb0LpkFTZmYE y5Fd4xWJTVlzj9oH+t7/zhP8Z4nIJKAOGn0lVDbx5+hLO6UMngfDgX5wiPN08yGswz 3vps1ZI9bWqVkZ30Fkc46pf9om46GmbbuYMqMwQQNFVQW4sBvlSRo1yu8RB9EzVh8R PBZDKABmpO6ZCSUqULUmiStjplq/MRA20gHLcVpZ+yDqY50QlniDzDsET6DyETW3BK FxjhAvY/tCKDmrC9HEZZIhIN9gLD4P0EDlAHmwskBHYPUOI/uh3xEllfi5W0lIkzqO cpiXfJxxKo2SDXQ3nPrCJsd0/O+mbEoTiXwGgL9D9JPZ1NsRMyHSueeU4O4quBeODv TNEq7jy8K+wgcvS+PFUlDCdqh0BDu42Ls0nHbkGVOqge2FLA3eh3f2VG3/GQj30YOz XRoVrYLz2qB0QCbMj3geG+f5ddP73c5aH4iLicNsAT+ab6JOC84caYak2w/DcsX956 Q6yFL1o3eIB3qC1h3MKlHIDiheKPCwfKBIZ8ALjZdZ8CiDFWEODn3WKLlnyq9+uhvQ Q7tG3RphAf4Sm1DD2I+ret5uvdHyIEmIqUOu8dZx4sI/4bF/d8SavQ2Dt3E/gv+rlI qMlp/f5cmQrC15m/BDNDzC0I=
- In-reply-to: <m3o6rz5m2t.fsf@lugabout.jhcloos.org>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <147f7756bbcb46d77e1c67c39d8aeedd@stamm-wilbrandt.de> <7250951a-4d0e-4188-a347-83e7dd886e18@isolution.nl> <56bd0c72-210e-4221-b8ea-bd482edfa068@u-bordeaux.fr> <19e0b0a296bba10e8a54a95b283c8ef2@stamm-wilbrandt.de> <aLCZBWHPSkzMWUa6@seventeen> <m3o6rz5m2t.fsf@lugabout.jhcloos.org>
On Thu, Aug 28, 2025 at 02:37:46PM -0400, James Cloos wrote:
> BA> Adding this one would break backward compatibility, so this is not
> BA> an option.
>
> does pari have a generalized factorial function?
>
> maxima's doc notes this:
>
> For an argument ‘n’ which is not an integer, float, or rational,
> ‘n!!’ yields a noun form ‘genfact (n, n/2, 2)’.
>
> perhaps pari's docs could suggest using such a generalized factorial
> when a double factorial is desired?
You can use
doublefact(n)=vecprod([2*i-1|i<-[1..(n+1)\2]])
Cheers,
Bill