Denis Simon on Tue, 09 Sep 2025 14:03:53 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: PARI/GP wrong on 7!!+7+1 being not prime, or oeis.org/Mathematica?
|
- To: pari-users <pari-users@pari.math.u-bordeaux.fr>
- Subject: Re: PARI/GP wrong on 7!!+7+1 being not prime, or oeis.org/Mathematica?
- From: Denis Simon <denis.simon@unicaen.fr>
- Date: Tue, 9 Sep 2025 14:03:49 +0200 (CEST)
- Cc: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Delivery-date: Tue, 09 Sep 2025 14:03:53 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=unicaen.fr; s=mail; t=1757419429; bh=I3pD/WSNA7sPVL9T8hDduHggiV1eev74zQVd84jws/I=; h=Date:From:To:Cc:In-Reply-To:References:Subject:From; b=ESdWuWX/I1KosChS3LJZHBn7A+JmmbWGU8goZ1FligThxTR4pqikhOjSObYD22Hx0 Q1ckjzWl9pbrf0JyQkAbcaFk/7i7INNl+EDZt8k035WVpAOAjsO0UVGmFVI5TPr1f+ j9s5NroGjOuB03DB+FA353L+d/82UlSh2VSCo4Jc=
- In-reply-to: <aL_gyXOrK-AiNJpl@seventeen>
- References: <147f7756bbcb46d77e1c67c39d8aeedd@stamm-wilbrandt.de> <7250951a-4d0e-4188-a347-83e7dd886e18@isolution.nl> <56bd0c72-210e-4221-b8ea-bd482edfa068@u-bordeaux.fr> <19e0b0a296bba10e8a54a95b283c8ef2@stamm-wilbrandt.de> <aLCZBWHPSkzMWUa6@seventeen> <m3o6rz5m2t.fsf@lugabout.jhcloos.org> <aL_gyXOrK-AiNJpl@seventeen>
- Thread-index: Zla/hvz8VL0fiHFBzt4QQNFVUrfZoQ==
- Thread-topic: PARI/GP wrong on 7!!+7+1 being not prime, or oeis.org/Mathematica?
Another possibility is to add Bill's suggestion in the help ?factorial or ??factorial.
Denis SIMON.
----- Mail original -----
> De: "Bill Allombert" <Bill.Allombert@math.u-bordeaux.fr>
> À: "pari-users" <pari-users@pari.math.u-bordeaux.fr>
> Envoyé: Mardi 9 Septembre 2025 10:09:45
> Objet: Re: PARI/GP wrong on 7!!+7+1 being not prime, or oeis.org/Mathematica?
> On Thu, Aug 28, 2025 at 02:37:46PM -0400, James Cloos wrote:
>> BA> Adding this one would break backward compatibility, so this is not
>> BA> an option.
>>
>> does pari have a generalized factorial function?
>>
>> maxima's doc notes this:
>>
>> For an argument ‘n’ which is not an integer, float, or rational,
>> ‘n!!’ yields a noun form ‘genfact (n, n/2, 2)’.
>>
>> perhaps pari's docs could suggest using such a generalized factorial
>> when a double factorial is desired?
>
> You can use
> doublefact(n)=vecprod([2*i-1|i<-[1..(n+1)\2]])
>
> Cheers,
> Bill